vLLM框架:使用大模型推理框架

       vLLM 专为高效部署大规模语言模型设计,尤其适合高并发推理场景,关于对vLLM的介绍请看这篇博文。以下从 安装配置基础推理高级功能服务化部署 到 多模态扩展 逐步讲解。

中文官方文档 

1. 环境安装与配置
1.1 硬件要求
  • GPU: 支持 CUDA 11.8 及以上(推荐 NVIDIA A100/H100,RTX 4090 等消费级卡需注意显存限制)

  • 显存: 至少 20GB(运行 7B 模型),推荐 40GB+(运行 13B/70B 模型)

1.2 安装步骤
# 创建虚拟环境(可选)
conda create -n vllm python=3.9 -y
conda activate vllm

# 安装 vLLM(自动安装 PyTorch 和 CUDA 依赖)
pip install vllm

# 验证安装
python -c "from vllm import LLM; print('vLLM installed successfully!')"
1.3 常见安装问题
  • CUDA 版本不匹配:手动安装对应版本的 PyTorch:

pip install torch==2.2.1 torchvision==0.17.1 torchaudio==2.2.1 --index-url https://download.pytorch.org/whl/cu118
2. 基础推理:快速运行模型
2.1 单次推理示例
from vllm import LLM, SamplingParams

# 初始化模型(自动从 HuggingFace 下载)
llm = LLM(model="meta-llama/Llama-3-8b-Instruct")

# 配置生成参数
sampling_params = SamplingParams(
    temperature=0.8,
    top_p=0.95,
    max_tokens=256,
    stop=["\n###"]  # 停止符
)

# 单输入推理
prompts = ["请用50字解释量子纠缠现象:"]
outputs = llm.generate(prompts, sampling_params)

# 输出结果
print(outputs[0].outputs[0].text)

2.2 批量推理与动态批处理

# 多提示词动态批处理
prompts = [
    "描述一张夕阳下的沙漠图片:",
    "将以下文本翻译成英文:量子计算机利用量子比特实现并行计算。",
    "生成三行关于人工智能的诗句:"
]

# 批量生成(自动优化显存分配)
outputs = llm.generate(prompts, sampling_params)

for i, output in enumerate(outputs):
    print(f"Prompt {i+1}: {output.prompt}")
    print(f"Result: {output.outputs[0].text}\n")
3. 高级配置与优化
3.1 显存管理参数
llm = LLM(
    model="Qwen/Qwen1.5-72B-Chat",
    tensor_parallel_size=4,       # 多GPU张量并行(需4块GPU)
    block_size=32,                # KVCache块大小(默认16)
    swap_space=20,                # CPU交换空间(GB)
    gpu_memory_utilization=0.9,   # 显存利用率阈值
)
3.2 性能优化技巧
  • 连续批处理(Continuous Batching):自动合并多个请求,提升吞吐量。

  • 量化支持:使用 AWQ/GPTQ 量化模型减少显存占用:

llm = LLM(model="TheBloke/Llama-2-7B-Chat-AWQ", quantization="awq")
3.3 自定义模型支持
  1. 注册新模型架构

    from vllm.model_executor.models import ModelRegistry
    
    class MyVisionLanguageModel(llm.model):
        # 实现前向传播逻辑...
    
    ModelRegistry.register_model("my_vl_model", MyVisionLanguageModel)
  2. 加载自定义模型:

    llm = LLM(model="/path/to/custom_model", model_loader="my_vl_model")
4. 服务化部署:构建高性能API
4.1 启动内置API服务器
# 单GPU启动
python -m vllm.entrypoints.api_server \
    --model meta-llama/Llama-3-8b-Instruct \
    --port 8000 \
    --max-num-seqs 256 \
    --tensor-parallel-size 1

# 多GPU启动(4卡)
python -m vllm.entrypoints.api_server \
    --model Qwen/Qwen1.5-72B-Chat \
    --tensor-parallel-size 4 \
    --gpu-memory-utilization 0.95

4.2 OpenAI兼容API调用

import openai

client = openai.OpenAI(
    base_url="http://localhost:8000/v1",
    api_key="token-abc123"
)

# 文本生成
response = client.completions.create(
    model="Llama-3-8b-Instruct",
    prompt="画一只机械猫的详细描述:",
    temperature=0.7,
    max_tokens=500
)
print(response.choices[0].text)

# 流式输出(适合长文本)
stream = client.completions.create(
    model="Llama-3-8b-Instruct",
    prompt="实时解说足球比赛:",
    stream=True
)
for chunk in stream:
    print(chunk.choices[0].text, end="", flush=True)
5. 计算机视觉集成:多模态扩展
5.1 视觉-语言模型示例(LLaVA)
from PIL import Image
import requests
from vllm import LLM

# 加载多模态模型(假设已支持)
vl_llm = LLM(model="liuhaotian/llava-v1.6-34b")

# 处理图像-文本输入
image_url = "https://example.com/dog.jpg"
image = Image.open(requests.get(image_url, stream=True).raw)

# 多模态推理
prompt = f"<image>{image}</image>\n描述这张图片中的场景:"
outputs = vl_llm.generate(prompt)

print(outputs[0].outputs[0].text)

 5.2 视频流处理管道

import cv2
from transformers import AutoImageProcessor

# 初始化视觉模型
image_processor = AutoImageProcessor.from_pretrained("google/vit-base-patch16-224")

# 视频逐帧处理
cap = cv2.VideoCapture("input.mp4")
while cap.isOpened():
    ret, frame = cap.read()
    if not ret:
        break
    
    # 提取视觉特征
    inputs = image_processor(frame, return_tensors="pt").to("cuda")
    
    # 构建多模态提示
    prompt = f"基于当前画面:{inputs.pixel_values},生成解说词:"
    
    # 调用vLLM生成文本
    description = vl_llm.generate(prompt)
    
    # 合成输出(伪代码)
    add_subtitle(frame, description.text)
    write_video_frame(frame)
6. 监控与调试
6.1 显存使用分析
# 获取显存统计信息
stats = llm.llm_engine.stat_logger.stats
print(f"显存利用率:{stats.gpu_memory_utilization:.2%}")
print(f"物理块数量:{stats.num_blocks_physical}")
6.2 性能分析工具
  • vLLM 日志:启动时添加 --log-level debug

  • Nsight Systems:分析 GPU 利用率

nsys profile --stats=true python my_vllm_script.py
7. 典型应用场景
场景配置建议视觉关联
实时视频描述生成启用连续批处理,块大小=32与 ViT 模型结合
大规模图像标注服务多 GPU 张量并行 + AWQ 量化CLIP 特征与 LLM 交互
交互式视觉问答系统低 temperature(0.3),启用流式输出动态加载图像块到 KVCache
长文档视觉摘要大 swap_space(40GB),LRU 块淘汰策略图文交叉注意力机制优化

8. 总结

通过以下步骤高效使用 vLLM:

  1. 环境配置:确保 CUDA 版本匹配,合理选择量化方案

  2. 推理优化:利用连续批处理、动态块分配提升吞吐

  3. 服务部署:通过 OpenAPI 兼容接口快速构建服务

  4. 多模态扩展:集成视觉模型实现图文联合推理

附:常用参数速查表

参数说明推荐值
--tensor-parallel-sizeGPU 并行数量与 GPU 数一致
--block-sizeKVCache 块大小16(长文本可设32)
--gpu-memory-utilization显存利用率阈值0.9
--max-num-seqs最大并发序列数根据显存调整

### MS-Swift 框架 MS-Swift 是一个专注于大型语言模型(LLM)和人工智能生成内容(AIGC)的微调框架。该框架不仅提供了一个用于训练和推理的强大脚手架,还支持多种流行的预训练模型,如 LLaMA、QWen、ChatGLM 和 Stable Diffusion 等[^2]。 #### 特点 - **广泛的模型支持**:能够直接加载并处理多个知名的大规模预训练模型。 - **集成优化工具**:内置了 Swift 库提供的 tuners 工具集合,方便开发者快速调整超参数以适应特定应用场景的需求。 - **简易部署流程**:通过简单的配置文件即可完成复杂环境下的高效部署工作。 #### 使用场景 适用于希望基于现有高质量基础架构之上构建自定义 NLP 或 AIGC 解决方案的研究人员和技术团队;特别是那些寻求简化从实验到生产过程中的诸多挑战的人群。 ### VLLM 框架 VLLM 则是一个专门设计用来加速大规模稀疏矩阵乘法运算以及提升 Transformer 架构性能表现的库。它被 Swift 选作其推理后端之一,并保持与 OpenAI API 风格的高度一致性,从而降低了迁移成本并提高了开发效率[^1]。 #### 特点 - **高性能计算能力**:针对现代硬件特性进行了深入优化,在执行涉及大量数据的操作时展现出卓越的速度优势。 - **易于集成接口**:遵循广泛接受的标准协议,使得与其他服务对接变得简单快捷。 - **灵活性强**:允许用户根据实际需求灵活定制化设置各项功能选项而不影响整体稳定性。 #### 使用场景 对于追求极致响应速度的应用程序来说是非常理想的选择;同时也非常适合于需要频繁更新权重参数或者动态改变网络结构的任务环境中。 ```python from vllm import Model model = Model("path/to/model") # 加载指定路径下保存好的模型实例 output = model.generate(input_ids) # 对输入序列进行编码解码操作获得预测结果 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值