MATLAB代码:考虑V2G的光储充一体化微网多目标优化调度策略
关键词:光储充微网 电电汽车V2G 多目标优化 蓄电池优化 调度
参考文档:《光伏微网下考虑V2G补偿蓄电池容量的双目标优化调度策略》,已经投稿EI会议,中文说明文档可联系我咨询
仿真平台:MATLAB 平台
优势:代码注释详实,适合参考学习,相关成果已经采用,程序非常精品,请仔细辨识!
主要内容:过建立光伏微网中以经济性和并网负荷波动率为双目标的蓄电池和V2G的协同调度模型。
采用粒子群算法,对电网、微网调度中心和电动汽车用户三方在无、无序、转移和调度V2G电动汽车负荷四种运行模式下的经济和安全影响进行对比。
最后,根据算例分析,求解四种模式下两级负荷曲线及经济收益表。
对比分析得出,引入V2G可以替代部分容量的蓄电池,使光伏微网在负荷峰谷平抑、三方经济和安全等方面进一步优化。
求解采用的是PSO算法(粒子群算法),求解效果极佳,具体可以看图!代码属于精品代码
ID:4219707970528567
羊驼的睡衣
MATLAB代码:考虑V2G的光储充一体化微网多目标优化调度策略
关键词:光储充微网 电电汽车V2G 多目标优化 蓄电池优化 调度
在光伏微网中,蓄电池和V2G的协同调度对提高经济性和减少并网负荷波动率具有重要意义。为了实现这一目标,本文提出了一种基于粒子群算法的多目标优化调度策略。通过比较在无、无序、转移和调度V2G电动汽车负荷四种运行模式下的经济和安全影响,对电网、微网调度中心和电动汽车用户三方进行优化调度。
首先,我们建立了光伏微网中的蓄电池和V2G的协同调度模型。考虑到经济性和并网负荷波动率是双目标,我们采用粒子群算法来求解最优解。粒子群算法是一种基于群体智能的优化算法,其模拟了鸟群觅食的行为,通过不断更新每个粒子的位置和速度来寻找全局最优解。
接下来,我们对四种运行模式下的经济和安全影响进行了对比分析。通过算例分析,我们得出了在不同模式下的两级负荷曲线和经济收益表。结果表明,引入V2G可以替代部分容量的蓄电池,从而进一步优化光伏微网在负荷峰谷平抑、经济和安全方面的性能。
最后,我们采用PSO算法对求解进行了评估。粒子群算法在求解过程中具有较佳的效果,能够找到全局最优解。通过详实的代码注释,我们提供了一个精品代码,适合学习和参考。此外,我们的研究成果已经得到验证并应用于实际系统中。
综上所述,本文基于光储充微网并引入V2G的多目标优化调度策略,通过粒子群算法求解蓄电池和V2G的协同调度问题,并对经济和安全影响进行了对比分析。我们的研究结果表明,在光伏微网中引入V2G可以进一步优化系统性能,提高经济性和减少并网负荷波动率。该研究为光储充微网的发展提供了有效的技术支持。
请注意,本文所提供的代码为精品代码,并且已经经过了验证。为了更好地了解细节,请参考相关成果和代码。
【相关代码,程序地址】:http://fansik.cn/707970528567.html