陪集与拉格朗日定理

陪集与拉格朗日定理

陪集

定义:设 H H H是群 G G G的子群, a ∈ G a\in G aG

(1)集合 a ⋅ H = { a ⋅ h ∣ h ∈ H } a\cdot H = \left\{a\cdot h | h \in H\right\} aH={ahhH}称为 a a a所在的 H H H的左陪集

(2)集合 H ⋅ a = { h ⋅ a ∣ h ∈ H } H\cdot a = \left\{h\cdot a | h \in H\right\} Ha={hahH}称为 a a a所在的 H H H的右陪集

定理1 :设 H H H是群 G G G的子群

(1) R ⊆ G 2 R \subseteq G^2 RG2定义为 ∀ a , b ∈ G \forall a, b \in G a,bG a R b aRb aRb当且仅当 b − 1 ⋅ a ∈ H b^{-1}\cdot a\in H b1aH,则 R R R是等价关系

∀ a ∈ G \forall a \in G aG [ a ] R = a ⋅ H \left[a\right]_R = a\cdot H [a]R=aH R R R称为 G G G关于 H H H左陪集关系

(2) R ′ ⊆ G 2 R^{\prime} \subseteq G^2 RG2定义为 ∀ a , b ∈ G \forall a, b \in G a,bG a R ′ b aR^{\prime}b aRb当且仅当 a ⋅ b − 1 ∈ H a\cdot b^{-1}\in H ab1H,则 R ′ R^{\prime} R是等价关系

∀ a ∈ G \forall a \in G aG [ a ] R ′ = a ⋅ H \left[a\right]_{R^{\prime}} = a\cdot H [a]R=aH R ′ R^{\prime} R称为 G G G关于 H H H右陪集关系

证明:

(1)

  1. R R R是等价关系, ∀ a ∈ G \forall a \in G aG,因为 a − 1 ⋅ a = e ∈ H a^{-1}\cdot a = e \in H a1a=eH,所以 a R a aRa aRa

∀ a , b ∈ G \forall a,b \in G a,bG,若 a R b aRb aRb,即 b − 1 ⋅ a ∈ H b^{-1}\cdot a \in H b1aH,则 a − 1 ⋅ b = ( b − 1 ⋅ a ) − 1 ∈ H a^{-1}\cdot b = \left(b^{-1}\cdot a\right)^{-1}\in H a1b=(b1a)1H,所以 b R a bRa bRa

∀ a , b , c ∈ G \forall a,b,c\in G a,b,cG,若 a R b aRb aRb b R c bRc bRc,即 b − 1 ⋅ a ∈ H b^{-1}\cdot a \in H b1aH c − 1 ⋅ b ∈ H c^{-1}\cdot b\in H c1bH,则 c − 1 ⋅ a = ( c − 1 ⋅ b ) ⋅ ( b − 1 ⋅ a ) ∈ H c^{-1}\cdot a = \left(c^{-1}\cdot b\right)\cdot \left(b^{-1}\cdot a\right)\in H c1a=(c1b)(b1a)H,所以 a R c aRc aRc

  1. ∀ a ∈ G , [ a ] R = a ⋅ H \forall a\in G,\left[a\right]_R = a\cdot H aG,[a]R=aH.首先, ∀ x ∈ [ a ] R , x R a \forall x\in \left[a\right]_R, xRa x[a]R,xRa,即 a − 1 ⋅ x ∈ H a^{-1}\cdot x\in H a1xH,所以 x = a ⋅ ( a − 1 ⋅ x ) ∈ a ⋅ H x=a\cdot \left(a^{-1}\cdot x\right)\in a\cdot H x=a(a1x)aH,故 [ a ] R ⊆ a ⋅ H \left[a\right]_R\subseteq a\cdot H [a]RaH

    其次, ∀ x ∈ a ⋅ H \forall x\in a\cdot H xaH ∃ h ∈ H \exists h \in H hH,使得 x = a ⋅ h x=a\cdot h x=ah,所以 a − 1 ⋅ x = h ∈ H a^{-1}\cdot x = h\in H a1x=hH,所以 x R a xRa xRa x ∈ [ a ] R x\in \left[a\right]_R x[a]R,故 a ⋅ H ⊆ [ a ] R a\cdot H\subseteq \left[a\right]_R aH[a]R,

因此 [ a ] R = a ⋅ H \left[a\right]_R=a\cdot H [a]R=aH

(2)类似

定理2:设 H H H是群 G G G的子群,则 ∀ a ∈ G \forall a \in G aG ∣ a ⋅ H ∣ = ∣ H ⋅ a ∣ = ∣ H ∣ \left|a\cdot H\right| = \left|H\cdot a\right|=\left|H\right| aH=Ha=H

证明:作 f : H → a ⋅ H , h ↦ a ⋅ h f:H\to a\cdot H, h \mapsto a\cdot h f:HaH,hah,以及 g : H → H ⋅ a , h ↦ h ⋅ a g:H\to H\cdot a,h\mapsto h\cdot a g:HHa,hha

易证 f , g f,g f,g双射,故 ∣ a ⋅ H ∣ = ∣ H ⋅ a ∣ = ∣ H ∣ \left|a\cdot H\right| = \left|H\cdot a\right|=\left|H\right| aH=Ha=H

定理3: 设 H H H是群 G G G的子群,则 H H H的左、右陪集数相同

证明:令 S l = { a ⋅ H ∣ a ∈ G } , S r = { H ⋅ a ∣ a ∈ G } S_l=\left\{a\cdot H | a\in G\right\}, S_r = \left\{H\cdot a | a \in G\right\} Sl={aHaG},Sr={HaaG},作
ϕ : S l → S r , a ⋅ H ↦ H ⋅ a − 1 \phi:S_l \to S_r,\quad a\cdot H \mapsto H\cdot a^{-1} ϕ:SlSr,aHHa1
(1) ϕ \phi ϕ是良定的。若 a ⋅ H = b ⋅ H a\cdot H = b\cdot H aH=bH,则 a R b aRb aRb,其中 R R R G G G关于 H H H的左陪集关系,即 b − 1 ⋅ a ∈ H b^{-1}\cdot a\in H b1aH

从而 a − 1 ⋅ ( b − 1 ) − 1 = ( b − 1 ⋅ a ) − 1 ∈ H a^{-1}\cdot \left(b^{-1}\right)^{-1}=\left(b^{-1}\cdot a\right)^{-1}\in H a1(b1)1=(b1a)1H,即 a − 1 R ′ b − 1 a^{-1}R^{\prime}b^{-1} a1Rb1,其中 R ′ R^{\prime} R G G G关于 H H H的右陪集关系,故 H ⋅ a − 1 = H ⋅ b − 1 H\cdot a^{-1}=H\cdot b^{-1} Ha1=Hb1

(2) ϕ \phi ϕ是单射。若 H ⋅ a − 1 = H ⋅ b − 1 H\cdot a^{-1} = H\cdot b^{-1} Ha1=Hb1,则 a − 1 R ′ b − 1 a^{-1}R^{\prime}b^{-1} a1Rb1,即 a − 1 ⋅ ( b − 1 ) − 1 ∈ H a^{-1}\cdot \left(b^{-1}\right)^{-1}\in H a1(b1)1H,所以 b − 1 ⋅ a = ( a − 1 ⋅ b ) − 1 ∈ H b^{-1}\cdot a=\left(a^{-1}\cdot b\right)^{-1}\in H b1a=(a1b)1H,即 a R b aRb aRb,故 a ⋅ H = b ⋅ H a\cdot H = b\cdot H aH=bH

(3) ϕ \phi ϕ是满射。 ∀ H ⋅ a ∈ S r \forall H\cdot a\in S_r HaSr,有 a − 1 ⋅ H ∈ S l a^{-1}\cdot H\in S_l a1HSl,且 ϕ ( a − 1 ⋅ H ) = H ⋅ a \phi\left(a^{-1}\cdot H\right)=H\cdot a ϕ(a1H)=Ha

因此 ϕ \phi ϕ双射, ∣ S l ∣ = ∣ S r ∣ \left|S_l\right| = \left|S_r\right| Sl=Sr

定义:设 H H H是群 G G G的子群,则称 H H H的左(右)陪集数为 H H H G G G中的指数,记为 [ G : H ] \left[G:H\right] [G:H]

拉格朗日定理

拉格朗日定理:设 H H H是有限群 G G G的子群,则 ∣ H ∣ \left|H\right| H整除 ∣ G ∣ \left|G\right| G,且 ∣ G ∣ = ∣ H ∣ [ G : H ] \left|G\right|=\left|H\right|\left[G:H\right] G=H[G:H]

证明:设 [ G : H ] = r \left[G:H\right]=r [G:H]=r,且 S l = { a 1 ⋅ H , a 2 ⋅ H , ⋯   , a r ⋅ H } S_l=\left\{a_1\cdot H, a_2\cdot H, \cdots, a_r\cdot H\right\} Sl={a1H,a2H,,arH}

因为 a i ⋅ H ∩ a j ⋅ H = ∅ , i ≠ j a_i\cdot H\cap a_j \cdot H=\empty, i\neq j aiHajH=,i=j,所以
∣ G ∣ = ∑ i = 1 r ∣ a i ⋅ H ∣ = r ∣ H ∣ = ∣ H ∣ [ G : H ] \left|G\right|=\sum_{i=1}^{r}\left|a_i\cdot H\right|=r\left|H\right|=\left|H\right|\left[G:H\right] G=i=1raiH=rH=H[G:H]
推论:(1)有限群 G G G的每个元素的阶均能整除 G G G的阶

(2)质数阶的群必为循环群

证明:(1) ∀ a ∈ G , ( a ) ≤ G \forall a\in G, \left(a\right)\le G aG,(a)G,所以 ∣ ( a ) ∣ \left|\left(a\right)\right| (a)整除 ∣ G ∣ \left|G\right| G,即 ∣ a ∣ \left|a\right| a整除 ∣ G ∣ \left|G\right| G

(2)设 G G G p p p阶群,其中 p p p是质数,其中 p p p是质数,由(1), ∀ a ∈ G \forall a\in G aG ∣ a ∣ \left|a\right| a整除 p p p

a ≠ e a\neq e a=e,则 ∣ a ∣ ≠ 1 \left|a\right|\neq 1 a=1,所以 ∣ a ∣ = p \left|a\right|=p a=p,故 G = ( a ) G=\left(a\right) G=(a)

课后习题

1.求 C 12 = { e , a , ⋯   , a 11 } C_{12}=\left\{e,a,\cdots, a^{11}\right\} C12={e,a,,a11} H = { e , a 4 , a 8 } H=\left\{e,a^4,a^8\right\} H={e,a4,a8}的所有右陪集
2.考虑 n n n次对称群 S n S_n Sn H H H时所有保持 1 1 1不变的 n n n阶置换群构成的置换群
H H H S n S_n Sn中的所有左陪集
3.设 H H H时群 G G G的子群。证明: H H H G G G中的所有左和右陪集中有且只有一个子群
4.设 H H H K K K时群 G G G的有限子群,且 ∣ H ∣ \left|H\right| H ∣ K ∣ \left|K\right| K互质。
试证: H ∩ K = { e } H\cap K=\left\{e\right\} HK={e}
5.设 p p p为质数, n ∈ I + n\in\mathbb{I}_+ nI+。试证: p n p^n pn阶群必有 p p p阶子群
6.证明: 6 6 6阶群恰有一个 3 3 3阶子群
7.证明: 10 10 10阶可交换群必为循环群

参考:
离散数学(刘玉珍)

#include using namespace std; //求G对应阶数的子群 int ziqun(int j) { int Jie =12/j; int i=0; int h[12]; for(;i<Jie;i++) { h[i]=i*j; } return h[12]; } //求出子群h的所有陪集,包括重复的 int peiji(int G[12],int h[12]) { int result[12][12]; int m=sizeof(h)/sizeof(h[0]); for(int i=0;i<12;i++) { for(int j=0;j<m;j++) { result[i][j] = mojia(h[j],G[j]); } } return result[12][12]; } //删减重复的陪集,得到最终陪集 int getPeiJi(int arr[12][12]) { int m=sizeof(arr[0]); int n=sizeof(arr); int len2=m/sizeof(int); int len1=n/m; int result[][] = new int[len1][len2]; int n=0; for(int i=0;i<len1;i++) { int temp[len2] = array[i]; bool flag = false; for(int j=i+1;j<len1;j++) { if(compare(temp[len2],array[j])) { flag = true; } } if(!flag) { result[n] = temp; n++; } } int newArr[][] = new int[n][len2]; for(int m=0;m<n;m++) { newArr[m]= result[m]; } return newArr[12][12]; } //打印出最终陪集 void printPeiJi(int newArr[][]) { int i=0 int j=0 int m=sizeof(newArr[0]); int n=sizeof(newArr); int len2=m/sizeof(int); int len1=n/m; //cout<<"陪集是:"<<endl; for(;i<len1<i++) { cout<<"h"<<i<<": {"; for(;j<len2;j++) { cout<<newArr[i][j]<<''; } cout<<"}"<<endl; } } //求划分,每个子群的陪集并集对应G的一个划分 void fenjie(int newArr[12][12]) //模加运算的定义 int mojia(int a,int b) { if(a<12&&b<12) return (a+b); else return null; } //比较两个数组内容是否完全相等 bool compare(int a[12],int b[12]) void main() { int G[12]={0,1,2,3,4,5,6,7,8,9,10,11};//G为给定群 int i=0; int N;//N为子群阶数 //int h1[12],h2[12],h3[12]; for(;i<6;i++) { cout<>N; cout<<N<<"阶子群的陪集是:"; printPeiJi(getPeiJi( peiji(G[12],ziqun(N)))); cout<<"对应G的配集分解为:"<<endl; fenjie(getPeiJi( peiji(G[12],ziqun(N)))); } }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Nightmare004

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值