1. Lipschitz gradient
If
∇f(x)
L-is lipschitz continuous, then we have
The right hand is because that
The left hand is because that
This tells that function with lipschitz derivative is upper bounded by a quadratic function.
2. Strong continuous
If
f(x)
is m-strong continuous, then we have
The left hand is because that
The left hand is because that
∀y
so
This tells that function with strong convexity is lower bounded by a quadratic function.
3. Co-coercivity of gradient
3.1 Lipschitz of gradient
If f(x) is convex and L2∥x∥22−f(x) is convex( ∇f(x) is lipschitz continuous), then we have
which can be rewritten as
which says that
with increasing derivative Lz−∇f(z) , is convex. So both of
are convex, then both of fx(z) and fy(z) are L-lipschitz. So
the same
combining these two, we get the co-coercivity of L-lipschitz gradient is
3.2 Strong convex
If f(x) is m-strong convex, then we have
And from theorem in blog
http://blog.csdn.net/comeyan/article/details/50541596#2-strong-convex
there exists a
M
such that
So
∇h(x)
is M+m lipschitz continuous. From last subsection, we know that