[First order method] Gradient descent tools

1. Lipschitz gradient

If f(x) L-is lipschitz continuous, then we have

12Lf(x)22f(x)f(x)L2xx22

The right hand is because that

f(x)f(x)+f(x)(xx)+L2xx22=L2xx22

The left hand is because that
f(x)f(y)infyf(x)+f(x)(yx)+L2yx22=f(x)12Lf(x)22

This tells that function with lipschitz derivative is upper bounded by a quadratic function.

2. Strong continuous

If f(x) is m-strong continuous, then we have

m2xx22f(x)f(x)12mf(x)22

The left hand is because that

f(x)f(x)+f(x)(xx)+m2xx2=m2xx2

The left hand is because that y

f(y)infyf(x)+f(x)(yx)+m2xy22=f(x)+12mf(x)22

so
f(x)f(x)+12mf(x)22

This tells that function with strong convexity is lower bounded by a quadratic function.

3. Co-coercivity of gradient

3.1 Lipschitz of gradient

If f(x) is convex and L2x22f(x) is convex( f(x) is lipschitz continuous), then we have

0(f(x)f(y))(xy)Lxy22

which can be rewritten as

((Lxf(x))(Lyf(y)))(xy)0

which says that

g(z)=L2z22f(z)

with increasing derivative Lzf(z) , is convex. So both of
g(z)+f(x)=L2z22f(z)+f(x)zfx(z)g(z)+f(y)=L2z22f(z)+f(y)zfy(z)

are convex, then both of fx(z) and fy(z) are L-lipschitz. So
f(y)f(x)f(x)(yx)=(f(y)+f(x)y)(f(x)f(x)x)=fx(y)fx(x)12Lfx(y)22=12Lf(y)f(x)22

the same
f(x)f(y)f(y)(xy)12Lf(y)f(x)22

combining these two, we get the co-coercivity of L-lipschitz gradient is

(f(x)f(y))(xy)1Lf(y)f(x)22

3.2 Strong convex

If f(x) is m-strong convex, then we have

h(x)=f(x)m2x22
is convex.

And from theorem in blog
http://blog.csdn.net/comeyan/article/details/50541596#2-strong-convex
there exists a M such that f(x) is M-lipschitz. So we have

h(x)h(y)2=f(x)mxf(y)+m(y)2(M+m)xy2

So h(x) is M+m lipschitz continuous. From last subsection, we know that

(h(x)h(y))(xy)1M+mh(y)h(x)22(f(x)mxf(z)+my)(xy)1M+mf(x)mxf(z)+my22(f(x)f(y))(xy)1M+mf(x)f(y)22+mMM+mxy22

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值