[first order method] Proximal Gradient Descent

本文介绍了Proximal Gradient Descent算法,该算法用于解决包含凸且可微分部分g(x)和凸非微分部分h(x)的无约束优化问题。当h(x)为0时,算法退化为梯度下降法;当h(x)为IA(x)时,转化为投影到集合A上;若h(x)为L1范数,则更新规则涉及软阈值操作。
摘要由CSDN通过智能技术生成

1 Proximal gradient descent

Unconstrained Problem with cost function split into two components.

minf(x)=g(x)+h(x)

where

  • g(x) : convex, differentiable, and dom(g)=Rn ;
  • h(x) :convex, nondifferentiable, but its proximal function is inexpensive. The proximal function is defined as
    Proxh(x)=argminu(h(u)+
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值