构建异质性超图(Heterogeneous Hypergraph Construction)涉及将用户-项目二部图(user-item bipartite graph)和知识图谱(knowledge graph)结合起来,以创建一个包含不同类型节点和多尺寸超边的结构。这种方法可以缓解传统超图的限制性,使得节点能够表示用户、项目或知识实体。下面是一种构造异质性超图的方法,以便用于超图嵌入过程(hypergraph embedding):
构建步骤
1. 数据准备
- 用户-项目二部图:从原始输入数据中提取用户和项目之间的交互信息,形成一个二部图 ( G_{ui} = (U \cup I, E_{ui}) ),其中 ( U ) 表示用户集,( I ) 表示项目集,( E_{ui} ) 是连接用户和项目的边集。
- 知识图谱:获取与项目相关的额外信息,例如项目类别、项目描述、项目属性等,并将这些信息整合成一个知识图谱 ( G_{kg} = (E, R) ),其中 ( E ) 是实体集,( R ) 是关系集。
2. 节点类型定义
- 将用户、项目以及知识图谱中的实体定义为不同类型的节点。例如:
- 用户节点 ( U )
- 项目节点 ( I )
- 实体节点 ( E )
3. 超边构造
- 对于用户-项目交互,创建连接用户和项目的超边 ( e_{ui} \subset U \cup I )。
- 对于项目和知识图谱中的实体之间的关系,创建连接项目和实体的超边 ( e_{ie} \subset I \cup E )。
4. 超边标签
- 根据超边所表示的关系类型为每个超边分配标签。例如,用户对项目的评分可以作为超边的权重,而项目与实体之间的关系则可以根据知识图谱中的关系类型来标记。
5. 异质性超图整合
- 将用户-项目二部图和知识图谱中的关系整合成一个统一的异质性超图 ( G_h = (V, E_h, L_V, L_E) ),其中 ( V = U \cup I \cup E ) 是所有节点的集合,( E_h ) 是所有超边的集合,( L_V ) 是节点标签集,( L_E ) 是超边标签集。
示例
假设我们有一个用户-项目二部图和一个知识图谱:
- 用户-项目二部图 ( G_{ui} ) 包含用户 ( U = {u_1, u_2} ) 和项目 ( I = {i_1, i_2} ),边集 ( E_{ui} ) 描述了用户与项目的交互。
- 知识图谱 ( G_{kg} ) 包含实体 ( E = {e_1, e_2} ) 和关系 ( R ),例如 ( i_1 ) 属于 ( e_1 ) 类别。
构造的异质性超图 ( G_h ) 可能如下:
- 节点集 ( V = {u_1, u_2, i_1, i_2, e_1, e_2} )。
- 超边集 ( E_h ) 包括连接用户和项目的超边(如 ( e_{u_1i_1} )),以及连接项目和实体的超边(如 ( e_{i_1e_1} ))。
通过这种方式,我们可以利用异质性超图来捕捉更多维度的信息,并为后续的超图嵌入提供丰富的输入数据。