1. 深度学习的介绍
1.1 深度学习与机器学习的区别
1.1.1 特征提取方面
- 机器学习的特征工程步骤是要靠手动完成的,而且需要大量领域专业知识。
- 深度学习通常由多个层组成,它们通常将更简单的模型组合在一起,将数据从一层传递到另一层来构建更复杂的模型。通过训练大量数据自动得出模型,不需要人工特征提取环节。
深度学习算法试图从数据中学习高级功能,这是深度学习的一个非常独特的部分。因此,减少了为每个问题开发新特征提取器的任务。适合用在难提取特征的图像、语音、自然语言处理领域。
1.1.2 数据量和计算性能要求
- 深度学习需要大量的训练数据集。
- 训练深度神经网络需要大量的算力。
可能要花费数天、甚至数周的时间,才能使用数百万张图像的数据集训练出一个深度网络。所以深度学习通常需要强大的GPU服务器来进行计算。
1.1.3 算法代表
- 机器学习:朴素贝叶斯、决策树等
- 深度学习:神经网络
1.2 深度学习的应用场景
图像识别、自然语言处理、语音识别
1.3 深度学习框架介绍
TensorFlow和PyTorch最常用。
TensorFlow框架特点:高度灵活、语言多样、设别支持、TensorBoard可视化。
TensorFlow的安装:CPU版本和GPU版本
注:CPU与GPU的对比
CPU:核芯的数量更少,但是每一个核芯的速度更快,性能更强,更适用于处理连续性任务。
GPU:核芯的数量更多,但是每一个核芯的处理速度较慢,更适用于并行任务。
CPU版本的Ubuntu安装:
pip install tensorflow==1.8 -i https://mirrors.aliyun.com/pypi/simple