研究背景
决策树是一种常用的机器学习算法,用于分类和回归问题。以下是一些关于决策树算法的经典论文:
Hunt, E. B. (1962). A machine-oriented logic based on the resolution principle. Journal of the ACM (JACM), 9(3), 187-215.
这篇论文提出了基于逻辑分析的决策树算法,该算法使用递归分割的方法来构建决策树,为后来的决策树算法提供了基础。
Quinlan, J. R. (1986). Induction of decision trees. Machine learning, 1(1), 81-106.
这篇论文介绍了C4.5算法,一种常用的决策树学习算法,该算法可以处理离散和连续属性,具有较高的分类准确性和可解释性。
Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees. CRC press.
这本书是决策树算法的经典著作,详细介绍了决策树的构建、剪枝和应用等各个方面,为决策树算法的研究和应用提供了重要的参考。
Quinlan, J. R. (1993). C4.5: Programs for machine learning. Elsevier.
这本书是C4.5算法的官方手册,详细讲解了C4.5算法的实现和应用,为使用C4.5算法解决实际问题提供了指导。
Murthy, S. K. (1998). Automatic construction of decision trees from data: A multi-disciplinary survey. Data mining and knowledge discovery, 2(4), 345-389.
这篇综述性论文对决策树算法进行了全面的介绍和评述,包括决策树的构建、剪枝、增量学习和集成等各个方面,为决策树算法的研究和应用提供了全面的视角和参考。
这些论文和书籍为决策树算法的理论和应用提供了重要的参考和指导,对于学习和掌握决策树算法具有重要意义。
原理说明
决策树是一种基于树形结构进行决策分析的方法,可以用于分类和回归问题。决策树算法通过对样本特征进行逐层划分,最终得到一颗树形结构,每个叶子节点表示一种分类结果或回归值。在对新样本进行分类或回归时,将样本特征从根节点开始依次判断,沿着树的分支向下走,直到到达叶子节点,然后将叶子节点的分类结果或回归值作为预测结果。
决策树算法的核心是如何选择最优的特征来进行分裂。在决策树算法中,我们使用信息增益或基尼不纯度来度量特征的重要性,以选择最优的特征进行分裂。
以分类问题为例,假设我们有一个数据集 D = ( x 1 , y 1 ) , ( x 2 , y 2 ) , . . . , ( x n , y n ) D={(x_1,y_1),(x_2,y_2),...,(x_n,y_n)} D=(x1,y1),(x2,y2),...,(xn,yn),其中 x i x_i xi 是样本特征向量, y i y_i yi 是样本标签。我们希望构建一个决策树模型来将样本分类为不同的类别。对于决策树的构建,我们需要选择一个根节点,然后逐层对数据集进行分裂,直到所有的样本都被分到同一类别中或达到预设条件(如树的深度达到一定值)。在每个节点处,我们需要选择一个最优的特征来进行分裂。
假设在某个节点 t t t 上,我们希望选择一个最优的特征 A A A 来进行分裂。我们可以使用信息增益来度量特征 A A A 对分类的贡献。信息增益表示在特征 A A A 的条件下,样本集合 D D D 的信息熵减少的程度,公式如下:
Gain ( D , A ) = Ent ( D ) − ∑ v ∈ Values ( A ) ∣ D v ∣ ∣ D ∣ Ent ( D v ) \operatorname{Gain}(D, A)=\operatorname{Ent}(D)-\sum_{v \in \text{Values}(A)} \frac{\left|D_{v}\right|}{|D|} \operatorname{Ent}(D_{v}) Gain(D,A)=Ent(D)−v∈Values(A)∑∣D∣∣Dv∣Ent(Dv)
其中 Ent ( D ) \operatorname{Ent}(D) Ent(D) 表示样本集合 D D D 的信息熵, Values ( A ) \text{Values}(A) Values(A) 表示特征 A A A 所有可能取值的集合, D v D_v Dv 表示在特征 A A A 取值为 v v v 时的样本集合, ∣ D ∣ |D| ∣D∣ 表示样本集合 D D D 的大小。
信息熵表示样本集合的混乱程度,公式如下:
Ent ( D ) = − ∑ k = 1 ∣ Y ∣ p k log 2 p k \operatorname{Ent}(D)=-\sum_{k=1}^{|\mathcal{Y}|} p_{k} \log {2} p{k} Ent(D)=−k=1∑∣Y∣pklog2pk
其中 ∣ Y ∣ |\mathcal{Y}| ∣Y∣ 表示样本集合 D D D 中不同
类别的个数, p k p_k pk 表示样本集合 D D D 中属于第 k k k 个类别的样本占比,即:
p k = ∣ y i = k ∣ ∣ D ∣ p_{k}=\frac{|y_{i}=k|}{|D|} pk=∣D∣∣yi=k∣
在选择最优特征时,我们需要选择使信息增益最大的特征进行分裂。具体地,对于样本集合 D D D,我们计算每个特征 A A A 的信息增益,选择信息增益最大的特征作为节点的分裂特征,将样本集合 D D D 按照该特征的不同取值分成多个子集合 D 1 , D 2 , . . . , D k D_1, D_2, ..., D_k D1,D2,...,Dk,对于每个子集合,我们可以继续递归地构建决策树,直到满足终止条件。
在构建决策树时,我们需要注意一些问题。例如,如果使用信息增益作为特征选择的标准,会倾向于选择具有较多取值的特征,因为这些特征的信息增益通常较高。为了解决这个问题,我们可以使用基尼不纯度作为特征选择的标准,基尼不纯度表示在特征 A A A 的条件下,样本集合 D D D 的基尼指数,公式如下:
Gini ( D ) = ∑ k = 1 ∣ Y ∣ ∑ k ′ ≠ k p k p k ′ = ∑ k = 1 ∣ Y ∣ p k ( 1 − p k ) = 1 − ∑ k = 1 ∣ Y ∣ p k 2 \operatorname{Gini}(D)=\sum_{k=1}^{|\mathcal{Y}|} \sum_{k' \neq k} p_{k} p_{k'}=\sum_{k=1}^{|\mathcal{Y}|} p_{k}(1-p_{k})=1-\sum_{k=1}^{|\mathcal{Y}|} p_{k}^{2} Gini(D)=k=1∑∣Y∣k′=k∑pkpk′=k=1∑∣Y∣pk(1−pk)=1−k=1∑∣Y∣pk2
Gini ( D , A ) = ∑ v ∈ Values ( A ) ∣ D v ∣ ∣ D ∣ Gini ( D v ) \operatorname{Gini}(D, A)=\sum_{v \in \text{Values}(A)} \frac{\left|D_{v}\right|}{|D|} \operatorname{Gini}\left(D_{v}\right) Gini(D,A)=v∈Values(A)∑∣D∣∣Dv∣Gini(Dv)
其中 Gini ( D ) \operatorname{Gini}(D) Gini(D) 表示样本集合 D D D 的基尼指数, Gini ( D , A ) \operatorname{Gini}(D, A) Gini(D,A) 表示在特征 A A A 的条件下,样本集合 D D D 的基尼指数, Values ( A ) \text{Values}(A) Values(A) 表示特征 A A A 所有可能取值的集合, D v D_v Dv 表示在特征 A A A 取值为 v v v 时的样本集合, ∣ D ∣ |D| ∣D∣ 表示样本集合 D D D 的大小。基尼不纯度越小,表示样本集合的纯度越高。
另外,在构建决策树时,我们需要注意过拟合的问题。如果决策树过于复杂,容易出现过拟合的情况,导致模型在训练集上的表现非常好,但在测试集上的表现较差。为了避免过拟合,我们可以采用剪枝技术对决策树进行修剪。剪枝分为预剪枝和后剪枝两种方法。预剪枝是在决策树构建过程中,对每个节点进行评估,如果该节点的划分不能带来决策树泛化性能的提升,就停止划分并将该节点标记为叶节点。后剪枝是在决策树构建完成后,对树进行剪枝。具体地,后剪枝算法首先将整棵树作为初始最优子树,然后从树底向上逐层对子树进行评估,如果剪枝后可以带来决策树泛化性能的提升,就剪枝。
决策树算法具有许多优点,例如易于理解、易于实现、适用于处理离散型和连续型数据等。但也存在一些缺点,例如容易出现过拟合的问题、对噪声敏感等。
总之,决策树算法是一种基本的分类和回归算法,广泛应用于机器学习领域。
公式推导
决策树算法并没有严格的数学公式,但是它有一些基本的概念和原理,例如熵、信息增益和基尼指数等。
熵(Entropy)是信息论中的一个概念,用于衡量一个系统的混乱程度。在决策树算法中,熵常常用于衡量数据集的无序程度。假设一个数据集D中有c个类别,每个类别的样本数分别为 D 1 , D 2 , … , D c D_1,D_2,\ldots,D_c D1,D2,…,Dc,则数据集D的熵可以表示为:
H ( D ) = − ∑ i = 1 c D i D log 2 D i D H(D)=-\sum_{i=1}^{c}\frac{D_i}{D}\log_2\frac{D_i}{D} H(D)=−i=1∑cDDilog2DDi
其中, D i / D D_i/D Di/D表示数据集中属于第i个类别的样本所占比例, log 2 \log_2 log2表示以2为底的对数。熵越大表示数据集越无序。
信息增益(Information Gain)是在决策树算法中用来衡量一个特征对数据集分类的能力。假设一个数据集D中有c个类别,每个类别的样本数分别为 D 1 , D 2 , … , D c D_1,D_2,\ldots,D_c D1,D2,…,Dc,然后假设我们选取一个特征A,该特征有v个取值,将数据集D划分为v个子集 D 1 , D 2 , … , D v D_1,D_2,\ldots,D_v D1,D2,…,Dv。则使用特征A对数据集D进行划分产生的信息增益为:
G a i n ( D , A ) = H ( D ) − ∑ i = 1 v D i D H ( D i ) Gain(D,A)=H(D)-\sum_{i=1}^{v}\frac{D_i}{D}H(D_i) Gain(D,A)=H(D)−i=1∑vDDiH(Di)
其中, D i / D D_i/D Di/D表示数据集中属于第i个子集的样本所占比例, H ( D i ) H(D_i) H(Di)表示第i个子集的熵。信息增益越大表示该特征对分类的能力越强。
基尼指数(Gini Index)是在决策树算法中另一种用来衡量一个特征对数据集分类的能力的指标。假设一个数据集D中有c个类别,每个类别的样本数分别为 D 1 , D 2 , … , D c D_1,D_2,\ldots,D_c D1,D2,…,Dc,然后假设我们选取一个特征A,该特征有v个取值,将数据集D划分为v个子集 D 1 , D 2 , … , D v D_1,D_2,\ldots,D_v D1,D2,…,Dv。则使用特征A对数据集D进行划分产生的基尼指数为:
G i n i ( D ) = ∑ i = 1 c ∑ j ≠ i p i p j = ∑ i = 1 c p i ( 1 − p i ) Gini(D)=\sum_{i=1}^{c}\sum_{j\neq i}p_i p_j=\sum_{i=1}^{c}p_i(1-p_i) Gini(D)=i=1∑cj=i∑pipj=i=1∑cpi(1−pi)
G i n i ( D , A ) = ∑ i = 1 v D i D G i n i ( D i ) Gini(D,A)=\sum_{i=1}^{v}\frac{D_i}{D}Gini(D_i) Gini(D,A)=i=1∑vDDiGini(Di)
其中, D i / D D_i/D Di/D表示数据集中属于第i个子集的样本所占比例。基尼指数越小表示使用该特征对分类的能力越强。
在决策树算法中,我们会选择信息增益或基尼指数最大的特征作为当前节点的分裂特征。假设当前节点的数据集为D,分裂特征为A,特征A有v个取值,将数据集D划分为v个子集 D 1 , D 2 , … , D v D_1,D_2,\ldots,D_v D1,D2,…,Dv。则根据信息增益或基尼指数的计算公式,我们可以得到一个划分准则:
A ∗ = arg max A G a i n ( D , A ) 或 G i n i ( D , A ) A^*=\mathop{\arg\max}_{A}\ Gain(D,A) \ 或 \ Gini(D,A) A∗=argmaxA Gain(D,A) 或 Gini(D,A)
其中, A ∗ A^* A∗表示选取的分裂特征。
在进行决策树的分类时,我们从根节点开始,按照划分准则递归地将样本划分到子节点中,直到达到叶子节点,将叶子节点所属的类别作为预测结果。如果测试样本的特征取值与当前节点的分裂特征取值相同,则继续递归到该子节点;否则,根据分裂特征的取值将测试样本划分到相应的子节点中。
决策树算法在实际应用中有多种变体,例如CART决策树、ID3决策树、C4.5决策树等。这些算法在具体的实现上可能有所不同,但是它们的基本思想都是类似的,即通过特征的分裂来建立决策树模型,实现对样本的分类和预测。