回归问题评价指标

本文详细介绍了回归问题的评价指标,包括MAE、MSE、RMSE、MAPE、MSLE、MedAE和R Squared。MAE和MSE对异常值敏感,而RMSE是MSE的平方根。MAPE是相对误差,MSLE适用于有较大误差的样本。MedAE通过中值衡量误差。R Squared评估模型拟合优度,值越接近1表示模型越好。这些指标有助于模型改进和调参。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

平均绝对值误差(MAE)

均方误差(MSE)

均方根误差(RMSE)

平均绝对百分比误差(MAPE)

均方误差对数(MSLE)

中位绝对误差(MedAE)

R Squared

总结


回归模型:n 个样本,每个样本为 (x_{i},y_{i}),预测值为\hat{y_{i}}i\in{1,2,\cdots ,n}.

平均绝对值误差(MAE)

计算每一个样本的预测值和真实值的差的绝对值,然后求和再取平均值。这个指标是对绝对误差损失的预期值。MAE对极端值比较敏感,即MAE 对异常值更加稳健,因为它不使用平方

MAE=\frac{1}{n}\sum_{i=1}^{n}|y_{i}-\hat{y_{i}}|

#公式法
MAE_1 = np.mean(abs(y_test - prediction))
print(MAE_1)

#使用sklearn.metrics模块
from sklearn.metrics import mean_absolute_error
MAE_2 = mean_absolute_error(y_test,prediction)
print(MAE_2)

均方误差(MSE)

(Mean Squared Error)计算每一个样本的预测值与真实值差的平方,然后求和再取平均值。该指标对应于平方(二次)误差的期望。是线性回归的损失函数,在线性回归的时候我们的目的就是让这个损失函数最小。受到异常值的影响很大

MSE=\frac{1}{n}\sum_{i=1}^{n}{(y_{i}-\hat{y_{i}})}^{2}


                
在Python中处理数据回归问题时,我们通常使用一系列评价指标来评估模型的性能。这些指标帮助我们理解模型对数据拟合程度的好坏以及预测的准确性。以下是一些常见的数据回归问题评价指标: 1. **均方误差(Mean Squared Error, MSE)**: 计算实际值和预测值之间的平均平方差,数值越小表示模型预测越准确。 ```python from sklearn.metrics import mean_squared_error mse = mean_squared_error(y_true, y_pred) ``` 2. **均方根误差(Root Mean Squared Error, RMSE)**: RMSE是对MSE的平方根,也是衡量预测值与真实值之间差距的标准偏差形式,更易于解读。 ```python rmse = np.sqrt(mean_squared_error(y_true, y_pred)) ``` 3. **R²得分(Coefficient of Determination, R^2 或者 R-squared)**: 又称决定系数,范围从0到1,值越大表示模型解释了数据变异性的比例越高。 ```python from sklearn.metrics import r2_score r2 = r2_score(y_true, y_pred) ``` 4. **平均绝对误差(Mean Absolute Error, MAE)**: 平均预测值与真实值绝对差的平均数,比RMSE对异常值更不敏感。 ```python mae = mean_absolute_error(y_true, y_pred) ``` 5. **对数似然(Log-Likelihood)**: 对于线性回归,这可能是不太常用的指标,但对于非线性模型如逻辑回归或指数回归,它是适用的。 6. **残差分析(Residual Plots)**: 检查残差图可以帮助判断模型是否满足假设(如线性关系、正态分布等)。 选择哪个指标取决于具体问题的性质和需求,例如,如果关心的是模型的整体精度,那么RMSE或MAE可能更好;如果重视模型的拟合优度,则R²分数更有用。在实际应用中,常常结合多个指标进行综合评估。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值