目录
回归模型: 个样本,每个样本为
,预测值为
,
.
平均绝对值误差(MAE)
计算每一个样本的预测值和真实值的差的绝对值,然后求和再取平均值。这个指标是对绝对误差损失的预期值。MAE对极端值比较敏感,即MAE 对异常值更加稳健,因为它不使用平方。
#公式法
MAE_1 = np.mean(abs(y_test - prediction))
print(MAE_1)
#使用sklearn.metrics模块
from sklearn.metrics import mean_absolute_error
MAE_2 = mean_absolute_error(y_test,prediction)
print(MAE_2)
均方误差(MSE)
(Mean Squared Error)计算每一个样本的预测值与真实值差的平方,然后求和再取平均值。该指标对应于平方(二次)误差的期望。是线性回归的损失函数,在线性回归的时候我们的目的就是让这个损失函数最小。受到异常值的影响很大。