对于普通理工科学生,如何转行做量化投资,如何少走弯路。注意,是针对普通理工科学生,天才怎么搞都行。
做量化投资,有三大技能树,金融经济、数学、计算机。金融经济,可以理解为对金融市场(广义)的理解。比如你能看懂财务三大报表吗?你知道M1, M2代表什么意思,有什么用吗?期货、期权在学术上是如何定价的?这个对于大多数理工科的朋友,是需要加强的一块。实际上,如果这个技能树足够强,就已经可以去做投资了。但大部分转行的人(包括我),是很难理解精深的。
数学,一是基础,线性代数,概率统计等。二是抽象建模能力。基础的目的是让你能看懂别人在讲什么,比如可以去尝试看一下《active portfolio management》。如果看不懂,就需要补基础。但基础是不够的,还需要抽象建模能力。实际上,真开始做策略了,非常需要抽象和建模能力。你不能总用别人发明出来的模型吧,总得改改不是?你观察到一个市场现象,想量化,总得用一个模型去描述吧?
计算机,说起来很简单,就是能实现、测试、实盘你的模型。基本上就是编程准确、迅速。理论是美好的,现实是残酷的。三大技能树都很强的人,我似乎也没见过。所以希望自己什么都强,然后秒杀一切,基本也就是幻想。那么,实际中,普通人应该怎么做?
战略上,一句话,发挥长处,不要老想补短。
听起来很简单,但实际上,做错的人很多。比如,如果你想去考个CFA基本上就是错的。且不说考证的时间精力成本,就算你考完了,其实帮助不大。没哪个老板招一个计算机专业的,是希望他来分析市场的。最多就是,“咦?这个小朋友不错,居然有毅力考下这个证。”
所以作为计算机专业的你,最好的方式,很不幸,还是编程,也就是发挥你的长处。比如建立数据库,开发交易系统,编写策略等等。只要做得足够好,足够快。再加上多出去跟人交流。很快就会有团队会找上你。当融入一个团队后,再跟着专家,边实践,边学习,才是最有效率的。
这两个项目的负责人都是我的好朋友。第一个项目的负责人,本来是IT行业的,纯粹是业余兴趣做了这个项目,后来被一家做量化平台的土豪公司挖走了。第二个项目的负责人,本来专业是金融,自己感兴趣做了这个项目,看起来像极了计算机专业的。他现在也非常抢手。
至于楼主,既然专业是数据挖掘和机器学习,那么可不可以做一个项目,用数据挖掘和机器学习来做投资策略呢?或者,写一些文章科普一下,也是极好的。毕竟,数据挖掘和机器学习,不管有没有用,还是能唬住一部分人的。然后,带着你的项目或者文章,去找个好团队吧!
1.如果转行,我将面临哪些潜在风险?2年的系统学习,可以满足量化投资(宽客)的职业需求吗?
答:机会成本。互联网行业本来就挺火,也挺有钱的不是?2年的系统学习,入门可以,实战不行。另外,啥叫系统的学习?据我所知,好像还没有系统的课程,是针对国内的量化投资行业的。
2.我要进行哪些方面的系统学习?工作实习与实践?
答:带着你的编程技能,去找靠谱的团队吧!干半年你就知道要学习什么了。当然,如果你硬是想学习,我也可以推荐相关的书籍。不过,想好,这是一条性价比很低的路。一般来说,针对问题看书才有用。
3.以后找相关工作,自己的壁垒在什么地方?我该怎么弥补?
答:壁垒在于,你不想编程。
4.其他方面的建议欢迎给出。谢谢。
答:千万不要自己一个人搞。
千万不要自己一个人搞。
千万不要自己一个人搞。
重要的话说三遍。
自己一个人搞,能搞出样来的,那是天才。如果题主自认天才,我无话可说。我假设绝大部分人都是普通人。普通人自己搞,结果一般都不太好。我见过好多自己一个人折腾了几年,啥也没搞出来,也没啥收入的,比较惨。
谢谢你的关注与点赞!
我愿意和你一起交流,一起聊金融证券、聊量化交易,共勉前行。
CQF量化金融分析师学习资料
本资料包含【新手辅导资料】、【CQF正课试学】、【量化职业发展解读】、【量化实操相关】
扫码领取
👇👇