AI术语大全:AGI、LLM、GenAI、GPT、ChatGPT和AIGC是什么意思?

自2022年底ChatGPT在全球AI界闪亮登场以后,你是不是经常听到AGI、LLM、GenAI、GPT和AIGC这几个词,但总是分不清它们到底是什么意思?

今天,我就用简单的话来给你讲讲这些词到底是什么意思。

AI,人工智能(Artificial Intelligence),就是让机器(尤其是计算机系统)表现出智能的技术。

这是计算机科学的一个重要研究领域,主要研究和开发让机器能够感知环境、通过学习和理解来采取行动的软件和方法,从而提高达成目标的可能性。这种机器被称为人工智能机器。

在解释这些词的过程中,我们一起回顾一下AI的发展历程。

1943年,McCullouch和Pitts提出了“人工神经元”的概念。

1950年,Alan Turing发表了’Computing Machinery and Intelligence’,介绍了图灵测试,并推动了机器智能的概念。

1956年,AI研究领域在美国达特茅斯学院的一次研讨会上正式成立。这标志着AI成为一个独立学科的起点。

1974年,美国和英国政府削减了资金,第一个“AI寒冬”开始,这反映了市场对AI研究可行性的质疑。

1980年代,专家系统的商业成功让AI研究有了复苏,标志着市场对AI领域的重新关注和投资。

1987年,Lisp Machine市场的崩溃,引发了第二个更长的AI寒冬。

1990年,Yann LeCun证明了卷积神经网络可以识别手写数字,显示了神经网络的实际应用。

2000年,到这一年,AI解决方案已广泛应用于各个领域,尽管通常不被明确地称为“人工智能”。

2002年,一些学术研究人员创立了AI的子领域AGI。AGI,也就是通用人工智能(Artificial General Intelligence),能够在广泛的认知任务上表现得与人类一样好,甚至更好。

它与狭义的人工智能不同,狭义的人工智能是为特定的任务而设计的,而AGI则更适应通用任务,是一种强人工智能。

2010年代,AGI领域已有多个资金雄厚的机构。

2012年,深度学习开始主导AI研究和应用,得到硬件的进步和大数据集的支持。

2015年,由DeepMind开发的AlphaGo首次击败了人类围棋职业选手樊麾,展示了AI系统的先进能力。

2015年12月11日,人工智能研究组织OpenAI在美国成立。

2017年,谷歌发表了具有深远影响的论文"Attention Is All You Need"。

论文中提出了基于multi-head注意力机制的深度学习架构Transformer,为后来出现的名为GPT的大语言模型奠定了基础。

大语言模型(Large Language Model, LLM)既是人工神经网络,也是一种以实现通用语言生成和其他自然语言处理任务(例如分类)的能力而闻名的语言模型

大语言模型通过在计算密集型的自监督和半监督训练过程中,从文本文档中学习统计关系,来获得这些能力。

大语言模型也是一种GenAI,通过输入文本并重复预测下一个标记或单词,来生成新的文本。

GenAI,也就是生成式人工智能(Generative Artificial Intelligence),也简称为GAI。

GenAI能够使用生成式模型,生成文本、图像、视频或其他数据。

它通常会对提示语做出响应。

生成式 AI 模型学习输入训练数据的模式和结构,然后生成具有相似特征的新数据。

2020年,一项调查发现,有 72 个活跃的 AGI 研发项目遍布 37 个国家。

创建 AGI ,是AI研究以及 OpenAI、DeepMind 和 Anthropic 等公司的主要目标。

2020年5月28日,OpenAI发布了有1.75千亿个参数的GPT-3,体现了自然语言处理和生成方面的重大进步。

GPT,也就是Generative Pre-trained Transformer,是一种大语言模型,也是知名的GenAI

2022年3月15日,OpenAI发布GPT-3.5,参数还是1.75千亿个,但经过了微调,生成文字阅读体验效果更好。

2022年11月30日,OpenAI发布基于GPT-3.5的聊天机器人ChatGPT。

ChatGPT,就是OpenAI在GPT的基础上,开发的文字聊天工具

ChatGPT由于使用了方便操作的浏览器界面,从而激发了普通大众的想象力,并引起了大量媒体炒作和网上热议。

2023年1月,ChatGPT已成为当时历史上增长最快的消费软件应用程序,拥有超过 1 亿用户,并为 OpenAI 当前估值的增长做出了 800 亿美元的贡献。

2023年3月14日,OpenAI发布了约有1.7万亿个参数的GPT-4,大大提升了生成文本的准确性。

微软研究院的一个团队认为,“GPT-4可以合理地被视为通用人工智能 (AGI) 系统的早期(但仍不完整)版本”。

看得有点晕吗?

现在我们再简单回顾一下

AI,也就是人工智能(Artificial Intelligence),是指让机器(尤其是计算机系统)表现出智能的技术。

AGI,也就是通用人工智能(Artificial General Intelligence),能够在广泛的认知任务上表现得与人类一样好,甚至更好。它与狭义的人工智能不同,狭义的人工智能是为特定的任务而设计的,而AGI则更适应通用任务,是一种强人工智能。

大语言模型(Large Language Model, LLM)既是人工神经网络,也是一种以实现通用语言生成和其他自然语言处理任务(例如分类)的能力而闻名的语言模型。

GenAI,也就是生成式人工智能(Generative Artificial Intelligence),也简称为GAI。GenAI能够使用生成式模型,生成文本、图像、视频或其他数据。大语言模型(Large Language Model, LLM)就是一种GenAI。

GPT,也就是Generative Pre-trained Transformer,是一种大语言模型,也是知名的GenAI。

ChatGPT,就是OpenAI在GPT的基础上,开发的文字聊天工具。

最后还有一个词汇AIGC,AIGC就是Artificial Intelligence-Generated Content,指的是GenAI生成的内容。

为了便于你理解,我画了一张示意图图,供你参考。

那么,如何系统的去学习大模型LLM?

作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。

所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。

由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
在这里插入图片描述

👉大模型学习指南+路线汇总👈

我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
在这里插入图片描述
在这里插入图片描述

👉①.基础篇👈

基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
在这里插入图片描述

👉②.进阶篇👈

接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
在这里插入图片描述

👉③.实战篇👈

实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
在这里插入图片描述

👉④.福利篇👈

最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
在这里插入图片描述
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值