区分 欧几里得距离 曼哈坦距离 明考斯基距离

欧几里得距离是二维空间中两点间的真实距离,适用于信号相似度衡量和图像处理。曼哈坦距离是坐标轴上两点投影距离之和,满足距离定义的基本性质。明考斯基距离是欧氏和曼哈坦距离的推广,通过调整参数q可适应不同情况。
摘要由CSDN通过智能技术生成

欧几里德距离(Euclidean Distance),欧氏距离。一种通常采用的表示相似度的距离定义,是表示在m维空间中两个点之间的真实距离。

对于n维空间中的两个点之间的欧几里得距离d(i,j)表示为:

d(i,j) = (|xi1-xj1|2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值