超强检测RT-DETR | Python/C++ 保姆级部署教程,从入门到精通!

作者 | 派派星  编辑 | CVHub

点击下方卡片,关注“自动驾驶之心”公众号

ADAS巨卷干货,即可获取

点击进入→自动驾驶之心【目标检测】技术交流群

后台回复【2D检测综述】获取鱼眼检测、实时检测、通用2D检测等近5年内所有综述!

c4840792f3bd886451a323f69f4306d5.png

Title: DETRs Beat YOLOs on Real-time Object Detection
Paper: https://arxiv.org/pdf/2304.08069.pdf
Code: https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/rtdetr

导读

62705af4887b5bba2895739bf7cbe285.png

众所周知,在目标检测领域,YOLO 系列模型一直充当着老大哥的角色。虽然其检测性能表现优异,但一直被广为诟病的便是其后处理过于繁琐且耗时,不好优化且不够鲁棒。

最近,基于Transformer的端到端检测器(DETR)取得了显著的性能。然而,DETR的高计算成本问题尚未得到有效解决,限制了它们的实际应用,并阻止它们充分利用无后处理的优点,例如非最大值抑制(NMS)。

于是乎,百度近期又基于 DETR 实现并开源了第一个实时的端到端物体检测器RT-DETR,有效的避免 NMS 导致的推理延迟同时提升性能。

b91c9bc5e7a31486310f151bb5ca1ecf.png

具体来说,作者设计了一个高效的混合编码器,通过解耦内部尺度交互和跨尺度融合来高效地处理多尺度特征,并提出了 IoU 感知的查询选择来改进目标查询的初始化。此外,RT-DETR 支持使用不同的解码器层来灵活调整推断速度,无需重新训练,从而方便实时物体检测器的实际应用。

cd767ed567719f926072dc23d909fcbf.png

最终 RTDETR-L 在COCO val2017上达到了53.0%的AP和114 FPS的速度,而RT-DETR-X达到了54.8%的AP和74 FPS,速度和准确性均优于相同规模的所有YOLO检测器。此外,RTDETR-R50 在精度上比 DINO-Deformable-DETR-R50 高 2.2% 的 AP,在FPS上高出约21倍,达到了 53.1% 的 AP 和 108 FPS!

关于理论部分我们简单介绍到这里,具体的解读可参考:https://mp.weixin.qq.com/s/o03QM2rZNjHVto36gcV0Yw。本文着中教大家如何从零到一完成 RT-DETR 模型的部署。具体的代码可直接在文末点击阅读原文直接跳转到 Github,欢迎点个 star!

安装依赖

  • 新建一个虚拟环境【可选】

conda create -n paddlepaddle python=3.8 -y
conda activate paddlepaddle
  • 下载相应的 paddle 版本【PaddlePaddle >= 2.4.1】

# 此处安装了适配 CUDA11.7 的 PaddleGPU 2.4.2 版本,请根据自己本地环境修改
python -m pip install paddlepaddle-gpu==2.4.2.post117 -f https://www.paddlepaddle.org.cn/whl/linux/mkl/avx/stable.html
  • 下载代码仓库

git clone https://github.com/PaddlePaddle/PaddleDetection.git
git checkout develop
# Install other dependencies
cd PaddleDetection
pip install -r requirements.txt
# Compile and install paddledet
python setup.py install
  • 下载预训练权重并测试环境是否正常

# 下载权重
wget https://bj.bcebos.com/v1/paddledet/models/rtdetr_r50vd_6x_coco.pdparams && mkdir weights && mv rtdetr_r50vd_6x_coco.pdparams ./weights

# 测试看能否正常 infer,测试图片自行替换下
python tools/infer.py -c configs/rtdetr/rtdetr_r50vd_6x_coco.yml -o weights=https://bj.bcebos.com/v1/paddledet/models/rtdetr_r50vd_6x_coco.pdparams --infer_img=bus.jpg
  • 修改配置文件

首先,进入文件路径 【PaddleDetection/configs/rtdetr/base/rtdetr_r50vd.yml】修改 DETR 的导出配置:

33827f1628984f68b780519a46166584.png

其次,进入文件路径 【PaddleDetection/ppdet/modeling/architectures/detr.py】将后处理输出合并下,便于部署

1b3436083bf8c3ce1f9d6cc1fdaae45c.png

注意,此处输出的 score 默认是没有归一化的,如果想一步到位的可以直接加 sigmoid 处理下。不过问题不大,因为我们的部署代码已经植入了自动判断,可根据输出值动态适配,此处可加可不加。另外,默认的导出方式是静态的,如果想改成动态Shape,只需调用 【PaddleDetection/scripts/paddle_infer_shape.py】函数修改 --input_shape_dict="{'image': [-1, 3, -1, -1]" 即可,这里 -1 代表动态输入。

最后,直接导出模型权重即可:

python tools/export_model.py -c configs/rtdetr/rtdetr_r50vd_6x_coco.yml \
              -o weights=https://bj.bcebos.com/v1/paddledet/models/rtdetr_r50vd_6x_coco.pdparams trt=True \
              --output_dir=output_inference
  • 转换模型格式

pip install onnx==1.13.0
pip install paddle2onnx==1.0.5

paddle2onnx --model_dir=./output_inference/rtdetr_r50vd_6x_coco/ \
            --model_filename model.pdmodel  \
            --params_filename model.pdiparams \
            --opset_version 16 \
            --save_file ./output_inference/rtdetr_r50vd_6x_coco/rtdetr_r50vd_6x_coco.onnx

此处我们仅以 ONNXRUNTIME 进行演示,对于想部署到 TensorRT 平台的可直接参考 PaddleDetection 官方提供的转换脚本,部署流程都差不多,只需要按照此工程写好预处理和后处理即可。

  • 使用 onnxsim 简化输出并用 netron 打开检查下:

pip install netron
pip3 install -U pip && pip3 install onnxsim
onnxsim input_onnx_model output_onnx_model
OriginModify
bc290d4ba19e98eb0021d8469bd718ad.png51247914a1829e85d3b2fd865d4a6b2d.png

左边是不做任何处理的原始导出模型,右边是经过适当调整后的导出模型。

Python 部署

这一块比较简单,经过上面的操作系统应该已经默认安装了onnxruntime库了,接下来我们只需照着下面的代码运行下即可。

$ git clone https://github.com/CVHub520/rtdetr-onnxruntime-deploy.git
$ cd rtdetr-onnxruntime-deploy
$ mkdir weights && cd weights
$ wget https://github.com/CVHub520/rtdetr-onnxruntime-deploy/releases/download/v1.0.0/rtdetr_r50vd_6x_coco_cvhub.onnx
$ cd ../python
$ python3 main.py

C++ 部署

  1. 安装编译 ONNXRUNTIME,以 Linux 环境为例。

  • 首先,下载源码:

git clone https://github.com/Microsoft/onnxruntime
cd onnxruntime/
  • 在安装之前,我们先进入到 onnxruntime 目录,其中 build.sh 文件为编译脚本,先打开看看:

#!/bin/bash
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.

# Get directory this script is in
DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" && pwd )"
OS=$(uname -s)

if [ "$OS" = "Darwin" ]; then
    DIR_OS="MacOS"
else
    DIR_OS="Linux"
fi

if [[ "$*" == *"--ios"* ]]; then
    DIR_OS="iOS"
elif [[ "$*" == *"--android"* ]]; then
    DIR_OS="Android"
fi

#requires python3.6 or higher
python3 $DIR/tools/ci_build/build.py --build_dir $DIR/build/$DIR_OS "$@"

可以看出,这个处理逻辑只是先判断当前系统环境,针对不同运行平台进行编译,主要编译选项在 tools/ci_build/build.py 文件下,打开文件后,我们重点看下 parse_arguments() 函数的参数说明。具体地,我们挑几个比较常见的讲讲:

  • --build_dir:用于指定编译后的库文件存放路径,不可缺省,此处指定在DIR_O 目录下;

  • --config:有四种模式,即["Debug", "MinSizeRel", "Release", "RelWithDebInfo"],例如 MinSizeRel 顾名思义便是优化目标文件的大小,而 RelWithDebInfo 则表示带 Debug 信息的原始目标文件,Release 即发行版,其目标文件大小介于这两者之间。一般可直接按默认,或者根据自己需要选择即可,例如我们这里直接选用 Release 版本。

  • --parallel:是否开启多核编译,建议开启,不然编译速度贼慢;

  • --skip-tests:单元测试,建议开启,直接跳过;

  • --use_cuda:如果需要使用 cuda 加速,就开启;注意,如果开启了此项,需要指定 --cuda_home 和 --cudnn_home 的路径,默认存放在 /usr/local 目录下;

  • --build_shared_lib:是否编译成动态库,默认是编译静态库;

  • Default behavior is --update --build --test for native architecture builds.

  • Default behavior is --update --build for cross-compiled builds.

  • --use_tensorrt:是否使用tensorrt加速,若开启,需要指定 --tensorrt_home 参数。


  • 没问题的我们可以根据自己需要选择合适的编译参数,此处 cuda 和 cudnn 路径需改为自己本地上的路径!:

./build.sh --skip_tests --use_cuda --config Release --build_shared_lib --parallel --cuda_home /usr/local/cuda-11.7 --cudnn_home /usr/local/cuda-11.7

注意,此过程会涉及到很多文件的下载,如果 git 访问很慢会导致多次中断,这时候可以多次重复运行下,若一直网络失败请参考问题汇总。运气不好的话,整个过程可能需要花费数个小时,请耐心等待。

6be2e6aa0ffcc1e219ca2305a3672e5e.png
  1. 安装编译 OpenCV 环境。

安装步骤可参考此教程: https://zhuanlan.zhihu.com/p/392751819

  1. 下载工程

$ cd rtdetr-onnxruntime-deploy
$ mkdir weights && cd weights
$ wget https://github.com/CVHub520/rtdetr-onnxruntime-deploy/releases/download/v1.0.0/rtdetr_r50vd_6x_coco_cvhub.onnx
$ cd ../cplusplus

注意:要构建项目,请确保正确安装了 onnxruntime 和 opencv。然后,按照指示运行命令。不要忘记更新 CMakeLists.txt 文件中的 ONNXRUNTIME_DIR 和 OpenCV_DIR cmake 选项以匹配您的自定义环境。

$ mkdir build && cd build
$ cmake ..
$ make
$ ./main
# ./main --use_cuda

结果展示

PythonC++
b6e4029531c634f44ebaf920111b7be6.jpeg76daf7f1ad5a5c841c5db7ae97ed838d.jpeg

边框坐标完全对齐,精度几乎没有损失。

总结

本文简单的为大家介绍了 RT-DETR 模型的一些基本概括,同时演示了如何基于 Python 和 C++ 在本地环境进行部署。完整的项目代码请访问 Github 地址,有任何疑问请加微信: cv_huber,备注“RTDETR”进入交流群讨论。最后,也欢迎大家点个 star 鼓励支持一下,感谢各位小伙伴长久以来的支持!

视频课程来了!

自动驾驶之心为大家汇集了毫米波雷达视觉融合、高精地图、BEV感知、传感器标定、传感器部署、自动驾驶协同感知、语义分割、自动驾驶仿真、L4感知、决策规划、轨迹预测等多个方向学习视频,欢迎大家自取(扫码进入学习)

a209dd580104f012fc1f33f4500c82e6.png

(扫码学习最新视频)

国内首个自动驾驶学习社区

近1000人的交流社区,和20+自动驾驶技术栈学习路线,想要了解更多自动驾驶感知(分类、检测、分割、关键点、车道线、3D目标检测、Occpuancy、多传感器融合、目标跟踪、光流估计、轨迹预测)、自动驾驶定位建图(SLAM、高精地图)、自动驾驶规划控制、领域技术方案、AI模型部署落地实战、行业动态、岗位发布,欢迎扫描下方二维码,加入自动驾驶之心知识星球,这是一个真正有干货的地方,与领域大佬交流入门、学习、工作、跳槽上的各类难题,日常分享论文+代码+视频,期待交流!

acb9f6aa58f99feeedf651e652fc8f68.jpeg

自动驾驶之心】全栈技术交流群

自动驾驶之心是首个自动驾驶开发者社区,聚焦目标检测、语义分割、全景分割、实例分割、关键点检测、车道线、目标跟踪、3D目标检测、BEV感知、多传感器融合、SLAM、光流估计、深度估计、轨迹预测、高精地图、NeRF、规划控制、模型部署落地、自动驾驶仿真测试、产品经理、硬件配置、AI求职交流等方向;

37408550714f746a4b119803e61e71c6.jpeg

添加汽车人助理微信邀请入群

备注:学校/公司+方向+昵称

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值