足下科技 | 智能驾驶软件行业分析报告,2024展望!

智能驾驶软件行业分析

研究报告

在汽车产业智能化转型的快速推进和新能源汽车市场不断扩张的背景下,智能驾驶操作系统作为新能源汽车的“心脏”已成为自动驾驶行业紧迫竞争中的关键要素。

《智能驾驶软件行业分析报告》以足下科技资深技术从业者的专业视角,深入分析了汽车行业和智能驾驶操作系统的发展动态。报告特别强调了智能驾驶操作系统在汽车产业智能化演进中的核心地位。最终,结合足下科技的行业从业者对未来走势的深刻预测,报告呈现了对该领域发展方向的深入见解,凸显了该系统在自动驾驶行业激烈竞争中的紧迫而不可或缺的作用。

06126a623b8e608e3d24a26f226ed43f.jpeg

1

  汽车计算势不可挡

自2018年起,全球汽车产业掀起了关于“软件定义汽车”讨论的热潮。随着以智能驾驶和智能座舱为代表的汽车智能化高速发展,电子电气架构由分布式向域集中式、中央计算架构演进,软硬解耦推动“软件定义汽车”成为必然趋势,汽车制造商开始重视软件的价值。在这一过程中,汽车行业需要在体系架构和软件开发理念及模式上均做出改变,建立更安全、更高效、更开放的软件生态,才能真正实现“软件定义汽车”。本章将分享一些正在大家身边发生的有关软件定义汽车的变化,进而分析这些变化对汽车行业和公众的影响。

电动车快速普及

奠定软件定义汽车的基础

某种程度上说,电动车是因为电的清洁属性而得到各国政策的大力支持;世界主要国家都已经制定了燃油车的禁止生产日期;而电动车的普及也奠定了软件定义汽车的基础。

26f56ae33a5db3c97a51598f46070d94.png

从电子电气架构上看,电动车比燃油车更适合软件驱动。公众对燃油车的关注点集中在发动机参数,而对于电动车的关注点除了续航外即是软件功能,而新生代车主对软件功能尤为重视。

作为交通工具是汽车最重要的属性,但交通工具带来便利的同时,人类为此也作出了不同的牺牲,比如驾照、停车位、车祸等等;通过自动驾驶等软件技术,人类可以尽可能减少这些牺牲。

汽车电子架构

从分布式走向集中式

传统汽车的电子电气架构是分布式的:每个功能由一个独立的硬件(零部件)承担,不同的零部件通过信号来简单协同。分布式的架构设计简化了汽车的设计和生产制造,车厂只需要设计零部件的功能和信号,各个供应商只需要保证自己负责的零部件正常工作即可。

但是分布式架构资源浪费和缺乏灵活性的问题也很显著,许多原本可以在同一个硬件上运行的不同功能实际运行在不同硬件上,想要增加一个软件功能可能就要考虑增加一个硬件。同时,分布电子电气架构下的功能ECU由不同的供应商提供,软件代码不统一,不同ECU中运行着独立的操作系统及应用软件,难以进行整车OTA和共享资源。

36773fdfbabc18a0d46e9afee082d081.png

(资料来源:博世,国联证券研究所)

在软件的作用越来越突现的今天,汽车的电子电气架构越来越集中,目前正在普及的域控制器架构,以及未来更集中的中央计算,在持续推进着软件定义汽车。随着智能化的升级,分布式架构单车ECU数量激增,而集中式架构可减少控制器数量,简化布线,减轻装配难度,降低成本,并减少因ECU不能协同产生的算力浪费,提升计算效率。

智能驾驶

正从概念走向量产

新能源车的普及是自动驾驶普及的重要推进力量。2021年新能源车渗透率首次达到了 20%,预计2022年新能源车的渗透率会接近23%,普及进程会进一步加快。

beff880ce276e416f9decb74510352ea.png

新车中搭载L2级及以上功能的比例从几年前的约3%提升到当下的接近30%,公众已经逐渐认可智能驾驶的实际价值,在部分新能源汽车甚至已成为标配,智能驾驶已经从“要不要”变成了“好不好”。对于软件厂商来说,谁能为客户提供实在的用户体验谁就能更好的适应这个变化。这也意味着公众将能够更加便宜的享受到科技进步的红利。

应用

从简单独享到复杂共享AI

传统汽车上的软件非常简单,座舱基本也只运行导航、语音等应用,控制类的应用就更简单了。而智能驾驶所带来的 AI 和复杂的控制逻辑有巨大的算力需求,功能独享算力的分布式架构所需要的成本市场已经无法承接。同时,多个复杂且不同的AI功能共享单个计算单元将会给应用开发和基础设施建设带来巨大挑战。

e11b4ae38215cd1a98c98e1d8889e48b.png

(某主机厂车型传感器配置)

另外,传感器的多样性(RGBD/IR摄像头,毫米波雷达,激光雷达,超声波雷达)、各类控制类ECU和计算芯片(Nvida, Qualcomm, 地平线等)的多样性,给算法厂商适配各类硬件带来巨大的挑战,对于车厂更换一种解决方案也带来巨大成本和供应链挑战。智能驾驶操作系统能够帮助硬件厂商定义满足市场需求的产品,快速的切入市场,减少适配成本;降低应用开发门槛,提高应用开发效率,促进智能驾驶普及。

智能汽车

对算力的需求万倍提升

智能汽车对迭代速度、可扩展性、大数据、功能安全、数据安全、冗余备份等要求较高,且代码量庞大,需要极高算力支持。分布式架构下,智能化升级依靠ECU和传感器数量的叠加;而在集中式架构下,域内主控芯片算力较强,可将多个ECU收集的数据在同一域控制器中统一处理。因为智能驾驶的复杂应用对计算能力的需求,各个芯片厂商规划的芯片计算能力大多达到几百T甚至P级别的计算能力,这已经相当于目前的一个小型服务器性能,成千上万倍于两三年前不到一个T的计算能力,这个量级的算力已经是几年前高性能计算的基本配置。

ce89c8523af96960c5340cbc390e3f58.png

在智能驾驶应用上发挥大芯片算力的同时提供实时性和稳定性保证是一个巨大的挑战,软件平台化是解决这个挑战的最佳技术路线,同时也是最佳商业化途径

在以大算力、AI、软件工程为代表的软件定义汽车最终的表现形式是应用软件,而其承载实体则是以操作系统为代表的计算平台软件,智能驾驶操作系统已经成为软件定义汽车的关键技术制高点

2

 软件/HPC/AI成为关键技术

在电动车普及率越来越高的前提下,汽车所携带的计算平台能力越来越强,越来越像是一个小型的服务器。

如何利用这个小型服务器来给用户实实在在的体验提升是产业链上各方的责任,而传统服务器上的软件、HPC、AI等技术也正迁移到汽车上,以满足用户对智能座舱、智能驾驶乃到自动驾驶的需求。本章,我们会分析这些需求并简单讨论这些需求和软件/HPC/AI的关联。

智能座舱

对软件/HPC/AI的需求

座舱是驾驶员和乘客与汽车交互的第一场景,只要坐进车辆,我们就在和座舱交互;在智能座舱的概念出现之前,座舱往往意味着座椅、仪表盘、显示屏、车窗玻璃、后排显示屏等;而具备极强交互性的AI技术出现后,座舱成为了车厂实现用户体验差异化的关键,智能座舱已经成为各大车厂竞争的焦点。

对驾驶员来说,他每时每刻都在和仪表盘、显示屏、车窗交互,通过仪表盘实时了解车辆状态,透过车窗玻璃感知前方环境,调整驾驶行为;在闲时,通过显示屏娱乐放松。因此驾驶员仪表盘、显示玻璃和显示屏的需求可以分解到对软件/HPC/AI的需求。

可以设想一下,如果驾驶员看到的仪表盘上的数据是2秒前的车辆状况,会有多么可怕,因此仪表盘对软件的第一个需求即实时性和稳定性。仪表盘是一个单向的输出设备,不存在驾驶员对仪表盘的输入,因此它对AI的需求基本没有。为了保证实时性且没有AI交互的需求,仪表盘往往使用低算力、高稳定的MCU。

驾驶员主要使用显示屏运行各种应用,比如最常见的地图导航、广播电台、音乐播放等;其偏娱乐性的场景和手机应用场景相对接近,因此大量复用手机的软硬件生态。

随着车厂竞争的深入,在娱乐性方面会有越来越多的创新,而这个创新中AI越来越成为技术底座。在智能座舱时代,对驾驶员的身心健康关注越来越受到重视,DMS差不多已经成为了标配。这些场景对软件的快速开发、迭代和测试能力有强烈需求,对低功耗的HPC和AI有强需求。

智能驾驶

对软件/HPC/AI的需求

L2辅助驾驶(含L2+)正处于规模化量产前期。目前已有少部分高端车型搭载NOA功能在引导市场,相信在不久的将来,L2辅助驾驶会像电动车普及那样,在用户逐步接受之后引来规模化爆发。

影响L2辅助驾驶能否规模化量产的,正是用户体验和成本,也就是性价比。一方面,用户体验好,用户才能放心的接受并建立口碑;另一方面,成本下降是规模化量产的前提。

在用户体验上,硬件决定了下限,软件(尤其是AI)决定了上限。在有限的硬件资源下,不仅需要通信和计算足够快,这直接影响了用户对功能的直观体验;而且需要尽可能的搭载有用的功能,这影响了用户对功能的体验。这就需要软件以用户需求为前提,在HPC和AI方面做最好的优化和加速,打造极致的用户体验。

在成本上,除了硬件成本外,软件成本也是影响L2辅助驾驶能否规模化量产的关键。不同的车型有不同的硬件配置,这就要求软件做好平台化,具备一定的可复用性,否则每个车型都重新开发,不仅人力成本大大增加,而且带来的风险也直线上升。此外,HPC优化加速可以节省算力,等效于节省硬件成本。

软件问题逐渐成为影响车型能否按时量产的关键因素,在汽车大变局时代,量产时间决定了能否及时把握市场时机,抢占先发优势。时间就是金钱,效率就是生命,兼顾性能、成本和开发效率的软件,加速智能驾驶规模化量产

自动驾驶

对软件/HPC/AI的需求

自动驾驶典型的场景是园区、Robotruck和Robotaxi,其中Robotaxi是最复杂的场景。大多数自动驾驶公司从算法切入,用工控机+ROS2搭建自动驾驶Demo进行测试,因为Demo阶段(甚至试运营阶段)驾驶位上依然有安全员,所以并不是严格意义上的无人驾驶。

要做到可量产的自动驾驶,除了算法鲁棒性以外,可量产的硬件和软件是必须的,而且其功能安全等级是最高的。自动驾驶还远远没到规模化量产的阶段,但已经到了小规模量产验证阶段,这要考验的是自动驾驶公司敢不敢把安全员拿掉。

要把安全员拿掉,软件需要极致的性能和安全,它比智能驾驶的要求更高。HPC,就是把软件性能发挥到极致的一把利刃,它可以充分“压榨”芯片的算力,让算法在芯片上算得最快。对自动驾驶来说,安全是最基本且关键的需求,也是应当一票否决的需求。而自动驾驶软件安全目前并没有一个明确的定义,把软件做安全是软件开发中最难且没有一个现成的方法;把软件做安全,对软件设计、开发、验证、CI/CD流程都有要求,且软件开发行业并没有因此形成共识和方法论。具体对自动驾驶公司来说,软件安全需要公司上下对此有清晰的认知和取舍。

自动驾驶目前还处于特定场景小规模试运营阶段,但特定场景的路况是有限的,即使在特定场景充分测试没有问题,也不能代表换个场景就没有问题。

自动驾驶不仅要求AI算法能应对已经学习过的场景,还需要应对没有学习过的场景,这也是深度学习的局限所在,需要一种新的技术来解决这个问题。

3

 软件供应商成为价值网络的重要一极

在分布式架构时代,汽车供应商一般特指零部件供应商,一些运行在 MCU 或 ECU 上的嵌入式软件由零部件供应商整体向车厂供应,这样供应商一般被称为一级供应商(Tier1),而提供嵌入式软件的供应商被称为二级供应商(Tier2)。在分布式架构时代,这种协作方式带来一系列的好处是车厂减少了管理成本和汽车架构设计难度,而对应的挑战是 Tier1 在产业链中的话语权很大。

随着汽车电动化和智能化的推进,汽车架构快速向集中式逐进,原来的产业链格局成为了车厂推出优秀产品的阻碍,独立验证的软件整合起来成为一个系统时,往往会出现许多出人意料的结果。软件系统集成越来越成为汽车产业不可回避的挑战,软件系统集成商越来越得到产业链的重视,价值链的形态越来越像网络。在产业链的竞合中,软件供应商逐渐从硬件供应商的附庸独立出来,成为越来越重要的一极。

软件能力

是系统集成的关键

如何把各个不同的软件供应商提供的产品整合起来,提供目标要求的功能,这本身就是一个软件工程的难题,软件工业领域为此产生了各种技术,典型的如设计模式、反模式、TDD、领域驱动设计、敏捷编程、Ajax、云原生等等,即使如此,内部协作的世界顶级软件公司也经常出现软件事故。

智能驾驶对软件的要求不只是功能,还有更关键的性能,让多个不同供应商的软件能够整合起来并且提供极高的性能,再加上自动驾驶对软硬件性能的极高要求,这是一个技术难度极高,管理能力要求极高的工作,为了适应这些要求产业链的重构正在快速且悄无声息的进行着。

软件能力已经成为未来汽车差异化竞争的根本,传统车厂和科技公司开始成立合资公司以加强本身的软件能力,造车新势力也希望通过软件的差异化提供独特的用户体验和新的盈利途径。

在电子电气架构从分布式向集中式转变过程中,系统集成的重点也从硬件转向软件,软件能力将成为各个系统集成商的关键竞争力,这个转变过程中一切皆有可能。

软件付费

已是行业共识

软件付费是个值得探讨的话题:互联网模式讲究流量为先,喜欢“羊毛出在猪身上”,实际上把关注点放在了“猪”身上本身就是错的。今天互联网公司重新回到了“羊毛出在羊身上”的本质,视频付费、APP付费正在成为共识。

国际上汽车行业软件和服务付费习惯由来已久,但受互联网模式的影响,中国一些产业链公司还是希望能“白嫖”,这引起了一个有意思的话题:为什么中国的软件不值钱?现实已经给了答案,在一些“先烈”为“白嫖”付出巨大成本后,产业链公司讨论的焦点转变成如何付费和付费多少。

智能驾驶

正从概念走向量产

传统汽车的价值链是典型的金字塔形式,维系这个关系的基础是零部件供应关系,这也和汽车的EE架构密切相关。产业链正在发生的改变是软件企业开始作为独立的Tier1直接和车厂合作,突现了软件价值和重要性。

这几年发生的典型改变是汽车软件供应商开始以Tier1的角色承担了操作系统(例如BlackBerry)、中间件(例如Vector)和开发工具等重要工作,体现了软件价值和重要性。国内这几年汽车软件供应商也逐步以软件Tier1或Tier 0.5的角色开始进入汽车行业,开始独立和车厂结算。

4

 广义智能驾驶操作系统众望所归

智能驾驶对操作系统高性能、低延迟的需求与行业的历史和现状决定了智能驾驶的普及需要一个完整系统的解决方案,该解决方案应该包括车端的运行时Runtime、PC端的开发工具与方法论、服务器或云端的基础设施。

足下科技把解决方案中“车端的运行时Runtime ”称为广义智能驾驶操作系统。广义智能驾驶操作系统能够解决智能驾驶应用在运行过程中面临的稳定性和安全性的挑战,为智能驾驶的普及提供高安全、低成本的整体解决方案。从技术视角看,智能驾驶操作系统是整个解决方案中技术难度最大、最需要根据用户需求重新设计的关键部分。我们认为完善的广义智能驾驶操作系统应当包含如下四个部分

c550972f659dffae3c67024f1c156d24.jpeg

操作系统内核:负责管理硬件资源,为上层软件提供最基本的抽象,屏蔽硬件细节,在确保硬件指标的同时降低简化硬件使用的难度、减少误操作风险,降低用户对硬件和芯片知识的依赖,为系统的安全性提供保证。

智能驾驶中间件:基于操作系统内核提供的抽象和应用场景的需求,智能驾驶中间件将提供一系列组件,旨在屏蔽操作系统细节的同时提供更好的性能,以及更易于实现编程和个性化定制能力。

智能驾驶功能框架:更好的支持算法和应用的自定义需求;提供算法和用户开发的良好接口,让开发者专注于自身的业务逻辑。

智能驾驶算法和应用:与最终用户交互,提供优质的用户体验。

业界的自动驾驶初创公司主要在做算法,车厂则专注于做应用,然而,目前需求最迫切的是性能更高的中间件和易用的功能框架,这一缺口直接导致智能驾驶应用在成本和效果方面的不尽人意。随着智能驾驶的逐步普及,智能驾驶操作系统正迎来前所未有的历史性机遇。

智能驾驶

操作系统内核

当前,在汽车领域广泛使用的操作系统内核有很多,主要是分布式架构设计时代的操作系统内核顺延到智能驾驶时代,主流的有Linux和QNX。

Linux作为最知名、最广泛应用的开源通用操作系统,主要应用于服务器、台式机和嵌入式领域,而汽车软件也可以归类为嵌入式的一个细分领域。需要注意的是,由于Linux是开源社区共同协作开发的操作系统,商业公司很难对其代码质量和安全性提出特殊要求,且修改Linux代码满足功能安全要求本身几乎是不切实际的。

相反,由黑莓开发的商业化的嵌入式操作系统QNX,最初设计时充分考虑了工业设备的安全性需求,采用了尽量小的微内核设计,使各个模块在运行时都成为独立的进程,并通过进程间通信机制和内核交互,从理论上来说,这种设计使得其它模块的错误不太可能导致内核崩溃。但是,由于QNX的微内核设计,其系统调用和进程间通信代价比Linux高了许多,因此难以满足自动驾驶对性能和延迟方面的需求。

总体来看,相比于QNX,Linux最大的优势在于开源性,这为用户提供了较高的定制开发灵活性。同时由于成本较低,Linux被许多汽车领域初创芯片公司使用。但是,随着智能驾驶等级的提升,功能安全将是个不可回避的议题。

智能驾驶

中间件

中间件是介于操作系统和应用软件的一种基础软件,中间件的存在有效的屏蔽了底层操作系统的复杂性,让程序开发人员只需面对相对简单统一的开发环境,从而降低了程序设计的复杂性。中间件在基于域控制器的智能驾驶应用开发当中扮演着举足轻重的角色。但业内对中间件的概念和范围并没有统一明确的定义,我们认为中间件首先必须是一种运行时环境,能支撑智驾应用稳定高效的运行。

目前比较常见的智驾中间件包括Autosar AP、ROS2和CyberRT。AP在实际应用中显得冗余和复杂,不仅学习和应用成本高,而且难以做到系统性能好。ROS2和CyberRT都是由ROS发展而来,因为开源,他们被一些厂商用来做自动驾驶Demo,在实际量产项目中很少使用。

在实际智能驾驶量产项目中,对中间件性能和安全都有很高的要求,而且会随着智能驾驶等级的提升越来越高,因此,需要针对智能驾驶应用场景专门设计的中间件。

随着国内新能源汽车的快速普及,以及基础软件的国产替代机会的涌现,国内的一些创业者看到了中间件市场的潜力,近年来,也相继出现了一批以中间件为主要产品的创业公司。

智能驾驶

功能框架

自动驾驶算法包括很多通用的算法模块,比如传感器的感知融合、车辆的定位、车辆路径规划、车辆运动控制等;同时还需要通信网联等其他软件模块形成完整的自动驾驶功能。

智能驾驶系统包含感知、预测、规划、地图、控制等多个环节,这些环节无法由一家供应商独立完成,需要多家不同的供应商协作。而且智能驾驶系统是以数据驱动的,这意味着开发阶段需要快速迭代,同时在量产后遇到Corner Case也需要快速解决应对。

大部分智能驾驶功能框架和算法之间是耦合的,这样一方面难以准确定位体验问题的具体源头,即问题出现在哪个环节;另一方面,系统集成方虽然是问题的第一责任人,但却未完全掌握智能驾驶功能框架,因此,解决问题时就极大依赖相应供应商的响应速度和配合程度。如何高效便捷的做好这些算法模块的集成?怎样更加高效的进行系统架构设计、开发、调试和测试?怎样在不同车型上进行软件复用?这一系列的问题对智驾软件集成方提出了更高的要求。

智能驾驶功能框架作为一种新的协同开发模式,具有以下优势:

· 能够帮助软件集成方快速搭建量产应用;

· 让上下游算法模块独立开发、独立验收;

· 提供统一的应用框架接口,支持模块之间无缝切换;

· 能够实现不同芯片平台的复用。

智能驾驶功能框架应起到统筹应用的作用,并在整个项目周期内统领应用的开发与各模块的协同,从而大大提升应用的开发效率。

功能框架的玩家一般是主机厂、第三方软件算法供应商、系统解决方案供应商以及一些传统Tier1。基于各自的特点,以上这些参与者在框架的设计上也各有侧重,比如传统Tier1主要结合自己传感器硬件提供一些基础功能模块,第三方软件算法供应商布局感知融合算法,系统方案商提供从硬件到应用软件的整套解决方案。

智能驾驶

算法及应用

在自动驾驶领域的创业公司中,有很多公司的创业方向是算法,自动驾驶作为人工智能技术重要的应用场景之一,其技术体系实现离不开算法的大规模部署。算法的有效性对自动驾驶的各个环节都具有重要影响,从感知环节的特征提取到神经网络的决策,都需要不断改进的算法来提高障碍物检测准确性和复杂场景下的决策能力,重要性不言而喻。

算法准确性对用户体验有很大影响。比如障碍物,算法检测出来就是检测出来,没检测出来就是没检测出来,为解决某一具体Case而在逻辑层做的调整不具备鲁棒性,这样往往解决了某一个Case,但引发一个原来没有问题的Case,最终还是要看算法模型的检测结果。从短期来看,车厂自研算法进度赶不上量产需求,算法供应商一般会和Tier1合作,来共同为车厂提供服务,但从长期来看,算法供应商难以掌握关键的数据信息,在与车厂的合作中,竞争力和话语权会逐渐减弱。

智能驾驶应用层软件负责实现各类功能的实现,如ADAS功能、高速辅助驾驶功能、城区辅助驾驶功能、自动泊车等等。相对成熟的ADAS功能可以由供应商来负责,但是更核心的中高阶智能驾驶应用目前来看,仍然由车厂来自行完成,也是其打造产品差异化的核心。

应用是最终和用户交互接口,不论是变道还是加减速等任何执行动作,它所有的执行动作都应该符合用户预期甚至超出用户预期,只有这样用户才能对应用建立信任,从而愿意高频的使用它。

人类文明发展至今,专业化的分工已经在众多行业中大幅提升了生产效率,社会财富总量快速攀升,人们的生活水平不断提高。回归到汽车产业链,同样需要各方参与者紧密协作,充分发挥各自擅长的领域通力合作,因为只有专业化的分工才能实现效率的最大化和最佳性能水平。

足下科技从用户需求出发,全新设计的广义操作系统Earth,在产品规划方面,Earth全面覆盖了从系统内核到中间件、应用开发框架的各个层面,能够非常高效的帮助车厂高效便捷的进行系统开发集成部署,解决车厂在量产过程中所遭遇的软件问题。

极致体验的应用建立在高性能的内核、中间件、智能驾驶功能框架和算法坚实的基础之上,需要系统性整体做到极致,才有可能为用户提供最佳的体验,这也正是高性能广义智能驾驶操作系统的价值所在。随着智能驾驶的逐步普及,可以很清晰的看到:智能驾驶操作系统将迎来历史性的机遇。

5

 足下科技 Earth 打破技术垄断

智能驾驶已经进入到域控制器时代,正在往跨域融合甚至中央计算方向发展,但基础软件技术依然沿用分布式ECU时代的技术,比如操作系统内核依然是Linux或者QNX,AutoSAR AP也是从CP扩展而来。

当这些技术应用于智能驾驶域控制器时,需求与技术不适配带来的性能问题及开发效率问题愈发明显,影响了智驾的用户体验及车型的上市时间。且这些技术依然是由国外所主导,国内开发者只能遵循或者在其基础上修改,无法根本上解决需求和技术的不匹配问题,域控时代的智能驾驶亟需中国自己的为智能驾驶而设计的操作系统,足下科技的 Earth 操作系统即是在这一时代背景下应运而生的产品。

Earth

架构和定位

Earth是足下科技完全自主研发的广义智能驾驶操作系统,从下到上包含高性能高安全操作系统内核Kernel、高性能中间件Mantle和智驾应用开发框架ShellEarth预设了高速NOA、APA等应用框架,客户只需定义算法组件接口并接入算法组件,即可完成相关应用的开发。

Earth已适配A1000、Orin、J5等大算力芯片,并且兼容Linux/QNX内核,极大丰富了客户的智驾方案。Earth配套的工具链Air,非常方便客户设计、开发、调试与测试,极大提升了智驾应用开发效率。

96abbf7d7641b20cc8e78789f04200ee.jpeg

(Earth高层次架构图)

Earth是专门针对智能驾驶(尤其是高阶智能驾驶)而设计的广义智能驾驶操作系统,可帮助客户快速打造高性能高安全的智能驾驶应用,让客户花更多时间在应用效果的测试与优化上,从而做出高用户体验的智驾产品。

Earth 

独特优势

首先,Earth是完全自主研发的操作系统,所有技术都具有自主知识产权,打破了国外技术垄断的同时,部分相关性能指标更优于国外技术。

其次,Earth可在智驾应用开发各阶段统一开发部署。Earth可运行于开发PC、域控制器、测试台架及测试服务器,覆盖应用设计开发、SIL仿真与算法验证、HIL测试、实车调试、CI/CD各阶段。

最后,Earth提供了一种行业分工明确的开发范式。架构设计阶段,应用架构全局统一静态配置,统筹整个项目周期;实现阶段,应用实现和算法实现相互解耦,并行开发;部署阶段,应用只需实现一遍,通过简单调整配置就可部署到不同的硬件配置上。

bc836143ab5069fd7e87115c24a9b628.jpeg

Earth

未来的发展前景

因为所有技术都自主可控,Earth的发展具备无限可能。

首先,Earth可无缝应用于更高阶的L3/L4自动驾驶系统。智能驾驶等级的提升是未来发展的必然趋势,也意味着对操作系统性能和安全的要求会越来越高,目前大部分L2及L2+系统软件都无法达到L3/L4的要求,当L3/L4普及的时候Earth的优势将会更加突出。

其次,Earth可向中央计算扩展。中央计算是整车电子电气架构未来发展的趋势之一,中央计算比域控计算更为复杂,操作系统需要统筹智驾、座舱等不同应用场景的不同需求。

最后,Earth可向机器人系统等高复杂系统扩展。汽车是一种特殊的机器人,它的场景特点是只能在道路上行驶并且速度可以很快;而机器人需要面对道路以外的各种场景,场景更多样且更有不确定性,虽然行驶速度不用太快,但需要快速处理突发情况,其对操作系统的要求也会复杂许多。

总之,所有需要高性能计算高安全高复杂的系统,技术上均是Earth未来可发展的方向。千里智行,始于足下。这也是足下科技成立的初衷。

END

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值