为何无图智驾用BEV/Occ,而不是SLAM建立局部语义地图?

点击下方卡片,关注“自动驾驶之心”公众号

戳我-> 领取自动驾驶近15个方向学习路线

>>点击进入→自动驾驶之心无图NOA技术交流群

论文作者 | 3D视觉之心

编辑 | 自动驾驶之心

问题

现在无图/轻地图的智驾方案比较火,主要就是因为依靠高精地图来为感知兜底的方式成本太高,那么为什么现在大家都齐刷刷地转向bev/occ+transformer的方案呢?这种方案相比于用SLAM方法实时建立一定时间范围内的局部语义地图,再在此地图上做规划的方案优势在哪儿?以SLAM为基础做局部导航的缺陷在哪儿?

风吹青年心的回答

作为SLAM算法方向的研究生来发表一下自己的看法。

首先我认为题主是混淆了一些概念,SLAM主要是解决定位问题,而BEV/Occ+Transforme主要解决感知任务(局部语义地图),感知是以定位为前提的,只不过这个定位可以不是SLAM定位。

6ce6b725a768977c698a280901e3ee2d.jpeg

一般SLAM算法的使用方法分为两步,先建图,后定位。在机器人应用中,这里第一步建好的地图 主要有两个作用,一个作用是用来进行全局的路径规划,另外一个作用是进行第二步的定位。

在自动驾驶场景中道路环境经常变化,高精地图的维护成本较高,因此自驾采用了重感知轻地图的方案,其中轻地图并不是无地图,自驾中全局的路径规划问题可以依靠百度地图等来进行,定位问题可以使用轮速计、IMU、卫星导航组合的方式来替代。然后在这种定位方法的基础上进行局部语义地图的创建。

而题主说的为啥不采用SLAM的方式进行局部语义地图的创建,我的理解是自驾中还是使用了SLAM中帧间位姿估计的方法,只不过没有采用基于先验地图的SLAM定位方法而已,所以这种多传感器组合定位的方法只是没有被叫做SLAM定位而已。

此外,虽然自驾中大多采用轻地图重感知的方案,但是室内机器人像是扫地机器人、人形机器人、仓运机器人等等还是采用的SLAM+局部语义地图的方法,因为室内机器人要求更高的精度,而且GPS等传感器在室内也无法使用,所以目前来说SLAM+感知的方案对于室内机器人来说还是主流。

最后,其实我感觉容易让题主产生疑惑的点更多的在于名称的叫法上面,只不过搞深度学习的人把定位+局部语义地图这一块工作叫做感知任务而已,其实跟SLAM+局部语义地图的叫法区别不大,局部语义地图的创建方法可以是一样的,区别只在于定位上面而已。

本人没有从事过自驾行业,所以也不保证说的是否完全正确,如果有不同理解,大家可以评论指正。

小方同学的回答

这个问题很好,借此澄清几个概念:

1 无“图”智驾,也需要有图,无“图”其实是偷换概念,因为商业和监管的原因。

2 不管无图有图,自动驾驶感知都有出带语义的OD,这个感知和BEV与否没关系,和Transformer与否也没关系。所以题目里,“无图方案都用xxx”并没有逻辑,其实是 无图方案也可以不用xxx,有图方案也可以用xxx

3 无图方案,都会使用SLAM技术建图。SLAM技术是一个建图和定位的技术的打包集合。不管有图无图,都会使用SLAM技术做融合定位或者叫定位配准。所以,这个提问,连续犯了三个逻辑错误。

4 倒数第二问,又来到了 规划 问题,规划和SLAM也并没有什么相关性。所以我也没看懂这个问题:“为什么用感知xxx,做定位xxx,比规划xxx好在哪儿”。自动驾驶都有先验地图的,不会像扫地机器人先探索一遍才知道怎么走的,除非先撞一圈墙。

5 关于最后一问,大家都会“以SLAM为基础做局部导航”,这句话等同于“以定位技术为基础做定位”。

a5a77ee7cb6fc9110eec2a460a9ddc20.jpeg

Joanna的回答

首先第一“无图”并不是没有高精地图,是不要外部提供的高精地图,内部是需要自建图;

第二:SLAM建图可以作为无图智驾一种方式,叫记忆行车,业内也有就是大疆,小鹏的通勤模式,这种模式是可以只用导航地图,但是SLAM一次并不能得到全部道路元素与结构,需要跑重复的道路几次,所以智驾系统会表现出一回生二回熟,一次比一次开的好,但这也就意味着它需要你跑同样的路线,SLAM建图是能适用于你经常上下班或者同一路线的通勤模式;

第三:bev/occ + transformer 不是一个方案,SLAM也是可以使用bev生成的道路拓扑自建地图的,另外有SLAM也并不意味着不需要occ,occ对于没有激光雷达方案,道路异形障碍物检测是必须的;

第四个:一定时间范围内的局部语义地图,如果简单依赖视觉bev+occ,是没有超视距信息的,也能用,但是你要接受它可能变道到汇入车道以及在遮挡时出现一些意想不到的问题,这种模式上限也就是有图;

Frank Dellaert的回答

首先就是高速场景,基于高精地图建立的先验地图信息更新比较慢,图商的地图车造价很高,都是季度更新的,最多是按照月去更新,所以如果在他们建图歪了一些的话,进行SLAM匹配时结果就会歪,因此这个技术路线就不是很成功的。

7e740d7aebdfa14e2872fceb42a442e5.jpeg

BEV可以实时感知周围前后20m甚至更远的距离,足够规划去使用。

所以SLAM的领地在不断的式微,所以我做这个方向最近在有个交待以后也尝试准备转一下

① 2025中国国际新能源技术展会

自动驾驶之心联合主办中国国际新能源汽车技术、零部件及服务展会。展会将于2025年2月21日至24日在北京新国展二期举行,展览面积达到2万平方米,预计吸引来自世界各地的400多家参展商和2万名专业观众。作为新能源汽车领域的专业展,它将全面展示新能源汽车行业的最新成果和发展趋势,同期围绕个各关键板块举办论坛,欢迎报名参加。

14c2c58634d832caeac404367e8b606e.jpeg

② 国内首个自动驾驶学习社区

『自动驾驶之心知识星球』近4000人的交流社区,已得到大多数自动驾驶公司的认可!涉及30+自动驾驶技术栈学习路线,从0到一带你入门自动驾驶感知端到端自动驾驶世界模型仿真闭环2D/3D检测、语义分割、车道线、BEV感知、Occupancy、多传感器融合、多传感器标定、目标跟踪)、自动驾驶定位建图SLAM、高精地图、局部在线地图)、自动驾驶规划控制/轨迹预测等领域技术方案大模型,更有行业动态和岗位发布!欢迎扫描加入

a84c3c1e76c68d82dbfdc1c66e78df04.png

 ③全网独家视频课程

端到端自动驾驶、仿真测试、自动驾驶C++、BEV感知、BEV模型部署、BEV目标跟踪、毫米波雷达视觉融合多传感器标定多传感器融合多模态3D目标检测车道线检测轨迹预测在线高精地图世界模型点云3D目标检测目标跟踪Occupancy、CUDA与TensorRT模型部署大模型与自动驾驶NeRF语义分割自动驾驶仿真、传感器部署、决策规划、轨迹预测等多个方向学习视频(扫码即可学习

cafa6de54bdfa5996d71373ccd4fab81.png

网页端官网:www.zdjszx.com

④【自动驾驶之心】全平台矩阵

6460c55973601148efae813c98e66e63.png

内容概要:本文由《未来产业新赛道研究报告》整理而成,涵盖了未来产业在全球范围内的发展态势和竞争形势。报告指出,引领型国家通过全方位体制机制创新,在先进制造、人工智能、量子科技、新一代通信等领域建立了全面领先优势。文中引用了麦肯锡和GVR的数据,预测了人工智能和人形机器人等未来产业的巨大经济潜力。报告还详细介绍了国外和国内对未来产业赛道的重点布局,如量子科技、人工智能、先进网络和通信技术、氢能与储能、生物技术等。此外,报告列举了中国重点省市如北京、上海等的具体发展方向,以及知名研究机构对未来产业热点的分析。最后,报告提出了构建我国未来产业重点赛道目录的建议,包括通用人工智能、高级别自动驾驶、商业航天、人形机器人、新型储能、低空经济、清洁氢、算力芯片、细胞与基因治疗和元宇宙等十大重点赛道。 适用人群:对科技趋势和未来产业发展感兴趣的政策制定者、投资者、企业家和研究人员。 使用场景及目标:①帮助政策制定者了解全球未来产业发展动态,为政策制定提供参考;②为企业提供未来产业布局的方向和重点领域;③为投资者提供投资决策依据,识别未来的投资机会;④为研究人员提供未来科技发展趋势的全景图。 其他说明:报告强调了未来产业在全球经济中的重要性,指出了中国在未来产业布局中的战略定位和发展路径。同时,报告呼吁加强国家顶层设计和行业系统谋划,探索建立未来产业技术预见机制,深化央地联动,推动未来产业高质量发展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值