评价算法优秀程序的时候,常用一系列指标来衡量,主要包括:Precision,Recall,F-1 Score,为什么要设计这些值?单单用Precision不行吗?
第一种解释:
1, 什么是Precision ?
Precison,准确度,主要表示检测出的Alert中有多少是正确的判断(True Positive,TP)。
实际使用中,由于样本中正常数据和异常数据的比例不同,准确性可能不能体现真实的算法性能,举个例子:
癌症检测:假定99.5%的人是健康的,0.5%的人患有癌症。
错误检测算法:简单所有患者都判断为健康的。
准确性:上述算法准确性为99.5% !!只有0.5%的不健康的人被误判为健康。
2, 为什么用Recall ?
上例中一种明显错误的检测算法可以轻松达到99.5%的准确度,所以准确性不能全面衡量算法优秀程度,为此设立了Recall值来衡量。
Recall,召唤率,异常数据被检测出来的比例。Recall = TP/(TP+FN)
在上例中,Recall就是0,没有异常值能够被检测出来。
3, 为什么用F-1 Score ?
将Precision和Recall结合起来就可以更综合衡量算法的优秀程度,F-1就是这样一个指标:
F-1 Score = 2*Precision*Recall /(Precision+Recall)
注:不能简单对Precision和Recall求均值(Average),上面那个明显错误的例子,Precision = 0.995, Recall = 0, 均值有0.5,明显不合理。
而采用F-1Score,F1依然是0,更合理。
第二种解释:
1. 四个概念定义:TP、FP、TN、FN
先看四个概念定义:
- TP,True Positive
- FP,False Positive
- TN,True Negative
- FN,False Negative
如何理解记忆这四个概念定义呢?
举个简单的二元分类问题 例子:
假设,我们要对某一封邮件做出一个判定,判定这封邮件是垃圾邮件、还是这封邮件不是垃圾邮件?
如果判定是垃圾邮件,那就是做出(Positive)的判定;
如果判定不是垃圾邮件,那就做出(Negative)的判定。
True Positive(TP)意思表示做出Positive的判定,而且判定是正确的。因此,TP的数值表示正确的Positive判定的个数。
同理,False Positive(TP)数值表示错误的Positive判定的个数。
依此,True Negative(TN)数值表示正确的Negative判定个数。
False Negative(FN)数值表示错误的Negative判定个数。
2. Precision、Recall、Accuracy、F1 Score(F Score)
四个概念定义:
- 1
- 2
- 3
- 4
- 1
- 2
- 3
- 4
如果某个二元分类问题,训练拟合得到了几个模型假设,那么通常我们选择在验证集上,F1 Score 数值最大的那个模型假设。