人群计数主流数据集介绍

一、ShanghaiTech Part A/B

  1. A: 共计482张图片,其中训练集300张,测试集182张;图片格式为.jpg,平均分辨率为 589 × 868 589 \times 868 589×868,标签格式为.mat
    • 训练集中最小图片尺寸为 299 × 450 299 \times 450 299×450(IMG_157.jpg)或者 420 × 182 420 \times 182 420×182(IMG_135.jpg),最大图片尺寸为 1024 × 1024 1024 \times 1024 1024×1024(IMG_57.jpg)
    • 训练集中含有 11 11 11张灰度图片和 14 14 14张竖屏图片;
    • 无验证集
    • 测试集中最小图片尺寸为 293 × 438 293 \times 438 293×438(IMG_138.jpg)或者 300 × 200 300 \times 200 300×200(IMG_34.jpg),最大图片尺寸为 1024 × 942 1024 \times 942 1024×942(IMG_23.jpg)或者 992 × 1024 992 \times 1024 992×1024(IMG_50.jpg)
    • 测试集中含有 9 9 9张灰度图片和 6 6 6张竖屏图片;
  2. B: 共计716张图片,其中训练集400张,测试集316张;图片格式为.jpg,平均分辨率为 768 × 1024 768 \times 1024 768×1024,标签格式为.mat
    • 训练集中图片尺寸均为为 1024 × 768 1024 \times 768 1024×768;无灰度图片;
    • 无验证集
    • 测试集中图片尺寸均为为 1024 × 768 1024 \times 768 1024×768;无灰度图片;
  3. ShanghaiTech数据集主页

二、NWPU-Crowd

  1. 共计5109张图片,其中训练集3109张,验证集500张,测试集1500张;
  2. 图片格式为.jpg,标签格式为.json.mat
  3. 平均分辨率为 2191 × 3209 2191 \times 3209 2191×3209
    • 训练集中最小图片尺寸为 259 × 194 259 \times 194 259×194(0216.jpg),最大图片尺寸为 19044 × 4028 19044 \times 4028 19044×4028(2503.jpg)或者 9302 × 6202 9302 \times 6202 9302×6202(0742.jpg)
    • 训练集中含有 0 0 0张灰度图片和 145 145 145张竖屏图片;
    • 验证集中最小图片尺寸为 640 × 384 640 \times 384 640×384(3503.jpg),最大图片尺寸为 10800 × 2332 10800 \times 2332 10800×2332(3173.jpg)或者 4480 × 6720 4480 \times 6720 4480×6720(3588.jpg)
    • 验证集中含有 0 0 0张灰度图片和 23 23 23张竖屏图片;
    • 测试集中最小图片尺寸为 260 × 194 260 \times 194 260×194(4868.jpg),最大图片尺寸为 9443 × 3236 9443 \times 3236 9443×3236(4933.jpg)或者 4480 × 6720 4480 \times 6720 4480×6720(3621.jpg)
    • 测试集中含有 0 0 0张灰度图片和 79 79 79张竖屏图片;
  4. trainvalidate目录下分别有一个train.txtvalidate.txt文档,文档打开后每一行有三列,第一列为image_id,第二列为luminance label,第三列为scene leveltest.txt文档只有一列,为image_id
  5. 值得注意的是,测试集不含标签,需在线评估:
    • 对于计数任务,提交文件为.txt文件,包含1500行,每行第一项是测试集图像的文件名(不含后缀),第二项是人数预测值(float类型),中间用一个空格隔开;
    • 对于定位任务,提交文件为.txt文件,包含1500行,每行第一项是测试集图像的文件名(不含后缀),第二项是人数预测值 N N Nint类型),再之后是 2 × N 2 \times N 2×N个整数,表示 N N N个人头的坐标位置 ( x , y ) (x, y) (x,y),每项之间用空格隔开;
  6. NWPU数据集主页

三、JHU_CROWD++

  1. 共计4372张图片,其中训练集2272张,验证集500张,测试集1600张;
  2. 图片格式为.jpg,标签格式为.txt
  3. 图片平均分辨率为 910 × 1430 910 \times 1430 910×1430
    • 训练集中最小图片尺寸为 169 × 117 169 \times 117 169×117(2660.jpg)或者 222 × 107 222 \times 107 222×107(1344.jpg),最大图片尺寸为 8580 × 4089 8580 \times 4089 8580×4089(1243.jpg)或者 7371 × 4914 7371 \times 4914 7371×4914(1227.jpg)
    • 训练集中含有 11 11 11张灰度图片和 59 59 59张竖屏图片;
    • 验证集中最小图片尺寸为 300 × 208 300 \times 208 300×208(1325.jpg)或者 750 × 206 750 \times 206 750×206(0179.jpg),最大图片尺寸为 7295 × 1878 7295 \times 1878 7295×1878(1614.jpg)或者 5760 × 3840 5760 \times 3840 5760×3840(3815.jpg)
    • 验证集中含有 2 2 2张灰度图片和 19 19 19张竖屏图片;
    • 测试集中最小图片尺寸为 232 × 378 232 \times 378 232×378(0202.jpg)或者 500 × 130 500 \times 130 500×130(4271.jpg),最大图片尺寸为 10088 × 3520 10088 \times 3520 10088×3520(4343.jpg)或者 3840 × 5760 3840 \times 5760 3840×5760(1670.jpg)
    • 测试集中含有 11 11 11张灰度图片和 47 47 47张竖屏图片;
  4. 训练集、验证集和测试集目录下均包含 2 2 2个子目录(imagesgt),以及一个文件image_labels.txt
  5. images目录下包含图像;
  6. gt目录下包含每张图像对应的.txt格式的标签,每个txt文件包含若干行,每一行有6个值 x , y , w , h , o , b x, y, w, h, o, b x,y,w,h,o,b,以空格’ '分割:
    • x , y x, y x,y表示头部位置;
    • w , h w, h w,h表示头部的大致宽度和高度;
    • o o o表示遮挡等级,其取值可为 1 , 2 , 3 1, 2, 3 1,2,3,分别表示 可见、部分遮挡、全遮挡;
    • b b b表示模糊登记,其取值可为 0 , 1 0, 1 0,1,分别表示不模糊、模糊;
    • 一个典型示例为 133 229 11 17 2 0
  7. image_labels.txt文件是图像级别的注释,其每一行是对一张图像的注释,具体地,一行包含五个值,以逗号’,'分割:
    • 图片文件名;
    • 图片中总人数;
    • 场景样式,如 会议、街景、火车站、游行等;
    • 天气条件,其取值可为 0 , 1 , 2 , 3 0, 1, 2, 3 0,1,2,3,分别表示 无特殊天气、雾霾、下雨、下雪;
    • 图像是否含有干扰,取值为 0 0 0表示不含有,取值为 1 1 1表示含有干扰(图中无人,为负样本;或者图中虽然有人,但背景纹理与人群相似);
    • 一个典型示例为 0092,210,railway station,0,0
  8. JHU数据集主页

四、UCF-QNRF

  1. 共计1535张图片,其中训练集1201张,测试集334张,不含验证集
  2. 图片格式为.jpg,标签格式为.mat
  3. 平均分辨率为 2013 × 2902 2013 \times 2902 2013×2902
    • 训练集中最小图片尺寸为 300 × 377 300 \times 377 300×377(img_1104.jpg)或者 480 × 246 480 \times 246 480×246(img_1117.jpg),最大图片尺寸为 7360 × 4912 7360 \times 4912 7360×4912(img_1073.jpg)或者 6666 × 9999 6666 \times 9999 6666×9999(img_0137.jpg)
    • 训练集中含有 11 11 11张灰度图片和 51 51 51张竖屏图片;
    • 测试集中最小图片尺寸为 400 × 300 400 \times 300 400×300(img_0289.jpg)或者 500 × 163 500 \times 163 500×163(img_0100.jpg),最大图片尺寸为 7360 × 4912 7360 \times 4912 7360×4912(img_0042.jpg)或者 3456 × 5184 3456 \times 5184 3456×5184(img_0090.jpg)
    • 测试集中含有 6 6 6张灰度图片和 16 16 16张竖屏图片;
  4. QNRF数据集主页

五、待更新

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值