torch sigmoid 反解sigmoid

这篇博客探讨了如何在Python中反解sigmoid函数,并通过torch库进行了实践操作。作者展示了不同输入值对应的sigmoid输出,并提供了时间测试结果,表明在大规模数据上执行效率较高。
摘要由CSDN通过智能技术生成

目录

python反解sigmoid

torch sigmoid练习


python反解sigmoid

import numpy as np

def invert_sigmoid(y):
    if y <= 0 or y >= 1:
        raise ValueError("y must be between 0 and 1, exclusive.")
    x = np.log(y / (1 - y))
    return x

# 示例
y = 0.8
x = invert_sigmoid(y)
print(f"The value of x that results in a sigmoid output of {y} is {x}")

torch sigmoid练习

import torch
import datetime


tensor_1 = torch.FloatTensor([-5000,-0.1,0.1,5,6,8,10.0,1000])
x = torch.sigmoid(tensor_1)  # Center x
print(x)

结果:

tensor([ 0.0000,  0.4750,  0.5250,  0.993

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI算法网奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值