WandB的使用

从github上下载了一个项目,结果有个wandb这个库,初始化fail,来了解了解。

import wandb


wandb_name = config_name + f"({args.split}) " + datetime.now().strftime("%m/%d/%Y, %H:%M:%S")
wandb.init( config=dict( yaml= args.config ), name = wandb_name, mode=mode )

官网地址:https://wandb.ai/site
使用手册document文档:https://docs.wandb.ai/
在这里插入图片描述
1.先来注册,一步步填写信息,在这里插入图片描述
一步步创建,之后进来了。
2.登录后,打开 “Settings” 页面,通常位于你的用户资料或主页中。

在 “API Keys” 部分,你可以生成一个新的 API 密钥。点击 “New API Key” 或类似的选项,然后按照提示创建 API 密钥。

生成 API 密钥后,将其保存在一个安全的位置,因为你需要在你的代码中使用它。
在这里插入图片描述

在你的 Python 代码中,使用 wandb.login() 或设置环境变量 WANDB_API_KEY 来配置 WandB 的 API 密钥。例如:

    # 配置 WandB API 密钥
    wandb.login(key="秘钥")

就可以了,到这,代码不报错,后面再来补充!

### 使用WANDB进行实验跟踪和模型管理 在Kaggle竞赛或笔记本环境中,使用Weights & Biases (WANDB) 进行实验跟踪和模型管理可以显著提高工作效率并增强可重复性。通过集成WANDB,能够记录超参数、指标以及可视化训练过程。 #### 安装与初始化 为了开始使用WANDB,在Kaggle Notebook中需先安装库: ```bash !pip install wandb ``` 接着,登录到WANDB账户以便同步数据: ```python import wandb wandb.login() ``` #### 初始化项目 创建一个新的WANDB运行实例并与特定的项目关联: ```python run = wandb.init(project="kaggle-project-name", entity="your_entity_name") ``` 此处`project`指定了项目的名称而`entity`则是团队或个人的名字[^1]。 #### 记录配置和超参数 可以在训练前定义一组固定的超参数,并将其传递给WANDB以供后续分析: ```python config = { "learning_rate": 0.01, "architecture": "CNN", "dataset": "MNIST" } wandb.config.update(config) ``` 这允许用户轻松比较不同设置下的性能差异[^2]。 #### 日志记录损失和其他度量标准 在整个训练过程中定期更新日志文件,包括但不限于损失函数值、准确率等重要统计信息: ```python for epoch in range(epochs): train_loss = ... val_accuracy = ... wandb.log({ 'epoch': epoch, 'train_loss': train_loss, 'val_accuracy': val_accuracy }) ``` 上述方法有助于实时监控进度并通过图表直观展示变化趋势。 #### 存储最佳模型权重 当找到最优解时保存对应的网络状态字典至云端存储空间内: ```python torch.save(model.state_dict(), f'best_model.pth') artifact = wandb.Artifact('model', type='model') artifact.add_file(f'best_model.pth') run.log_artifact(artifact) ``` 此操作确保每次迭代都能获取最新的改进成果。 #### 结束会话 完成所有工作之后记得关闭当前活动连接: ```python run.finish() ``` 这样做不仅释放资源还防止意外的数据丢失风险。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

阿月浑子の

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值