1. 矩阵的逆
定义:对矩阵 A A A,若存在矩阵 B B B使得 A B = B A = I AB=BA=I AB=BA=I,则 B B B唯一,称之为矩阵的逆,记为 A − 1 A^{-1} A−1。
矩阵的逆具有如下基本性质:
(i) A − 1 A^{-1} A−1存在当且仅当 ∣ A ∣ ≠ 0 |A|\neq0 ∣A∣=0。
证明:若 A − 1 A^{-1} A−1存在,对 A A − 1 = E AA^{-1}=E AA−1=E两边取行列式,得 ∣ A ∣ ∣ A − 1 ∣ = ∣ E ∣ = 1 |A||A^{-1}|=|E|=1 ∣A∣∣A−1∣=∣E∣=1,因而 ∣ A ∣ ≠ 0 |A|\neq0 ∣A∣=0。
当 ∣ A ∣ ≠ 0 |A|\neq0 ∣A∣=0时,由行列式按一行展开的公式知 A A ∗ = A ∗ A = ∣ A ∣ E AA^*=A^*A=|A|E AA∗=A∗A=∣A∣E,可写 A ( 1 ∣ A ∣ A ∗ ) = ( 1 ∣ A ∣ A ∗ ) A = E A(\frac{1}{|A|}A^*)=(\frac{1}{|A|}A^*)A=E A(∣A∣1A∗)=(∣A∣1A∗)A=E
即得 A − 1 = A ∗ ∣ A ∣ A^{-1}=\frac{A^*}{|A|} A−1=∣A∣A∗。% A − 1 A^{-1} A−1存在。
(ii) ( A ′ ) − 1 = ( A − 1 ) ′ (A')^{-1}=(A^{-1})' (A′)−1=(A−1)′。
证明:由 A A − 1 = A − 1 A = E AA^{-1}=A^{-1}A=E AA−1=A−1A=E两边取转置: ( A − 1 ) ′ A ′ = A ′ ( A − 1 ) ′ = E ′ = E (A^{-1})'A'=A'(A^{-1})'=E'=E (A−1)′A′=A′(A−1)′=E′=E于是 ( A ′ ) − 1 = ( A − 1 ) ′ (A')^{-1}=(A^{-1})' (A′)−1=(A−1)′。
(iii) ( c A ) − 1 = c − 1 A − 1 (cA)^{-1}=c^{-1}A^{-1} (cA)−1=c−1A−1,其中 c c c为非零实数。
(iv) ( A B ) − 1 = B − 1 A − 1 (AB)^{-1}=B^{-1}A^{-1} (AB)−1=B−1A−1,如果 A − 1 A^{-1} A−1和 B − 1 B^{-1} B−1都存在。
证明:由 ( A B ) ( B − 1 A − 1 ) = ( B − 1 A − 1 ) ( A B ) = E (AB)(B^{-1}A^{-1})=(B^{-1}A^{-1})(AB)=E (AB)(B−1A−1)=(B−1A−1)(AB)=E即得。
(v)
d
i
a
g
(
a
1
,
.
.
.
,
a
n
)
−
1
=
d
i
a
g
(
a
1
−
1
,
.
.
.
,
a
n
−
1
)
diag(a_1,...,a_n)^{-1}=diag(a_1^{-1},...,a_n^{-1})
diag(a1,...,an)−1=diag(a1−1,...,an−1)
更一般地,如果
A
A
A是分块对角阵,
A
=
d
i
a
g
(
A
1
,
.
.
.
,
A
k
)
A=diag(A_1,...,A_k)
A=diag(A1,...,Ak),其中
A
j
,
1
≤
j
≤
k
A_j,1\leq j\leq k
Aj,1≤j≤k非奇异,即
∣
A
j
∣
≠
0
,
1
≤
j
≤
k
|A_j|\neq0,1\leq j\leq k
∣Aj∣=0,1≤j≤k,则
A
−
1
=
d
i
a
g
(
A
1
−
1
,
.
.
.
,
A
k
−
1
)
A^{-1}=diag(A_1^{-1},...,A_k^{-1})
A−1=diag(A1−1,...,Ak−1)。
(vi) 对于任意的
n
×
n
n\times n
n×n阶非奇异阵
A
A
A,
n
×
q
n\times q
n×q阶矩阵
U
U
U,
q
×
n
q\times n
q×n阶矩阵
V
V
V,有
(
A
+
U
V
)
−
1
=
A
−
1
−
A
−
1
U
(
I
q
+
V
A
−
1
U
)
−
1
V
A
−
1
(A+UV)^{-1}=A^{-1}-A^{-1}U(I_q+VA^{-1}U)^{-1}VA^{-1}
(A+UV)−1=A−1−A−1U(Iq+VA−1U)−1VA−1
该公式的一个简单应用为:
记
1
n
1_n
1n为
n
n
n维全1向量,
J
n
=
1
n
1
n
′
J_n=1_n1_n'
Jn=1n1n′,实数
a
a
a、
b
b
b满足
a
≠
0
a\neq0
a=0及
a
+
n
b
≠
0
a+nb\neq0
a+nb=0,则有:
(
a
I
n
+
b
J
n
)
−
1
=
1
a
(
I
n
−
b
a
+
n
b
J
n
)
(aI_n+bJ_n)^{-1}=\frac{1}{a}(I_n-\frac{b}{a+nb}J_n)
(aIn+bJn)−1=a1(In−a+nbbJn)同时有
∣
a
I
n
+
b
J
n
∣
=
a
n
−
1
(
a
+
n
b
)
|aI_n+bJ_n|=a^{n-1}(a+nb)
∣aIn+bJn∣=an−1(a+nb)。
证明:下面证明更一般的Woodbury公式:
(
A
−
U
C
−
1
V
)
−
1
=
A
−
1
+
A
−
1
U
(
C
−
V
A
−
1
U
)
−
1
V
A
−
1
(A-UC^{-1}V)^{-1}=A^{-1}+A^{-1}U(C-VA^{-1}U)^{-1}VA^{-1}
(A−UC−1V)−1=A−1+A−1U(C−VA−1U)−1VA−1
其中
C
C
C可逆。
考虑矩阵
[
A
U
V
C
]
\left[\begin{matrix} A&U\\ V&C \end{matrix}\right]
[AVUC],由于
A
A
A可逆,
消除第(2,1)项(行变换):
[
I
0
−
V
A
−
1
I
]
[
A
U
V
C
]
=
[
A
U
0
C
−
V
A
−
1
U
]
\left[\begin{matrix} I&0\\ -VA^{-1}&I \end{matrix}\right]\left[\begin{matrix} A&U\\ V&C \end{matrix}\right]=\left[\begin{matrix} A&U\\ 0&C-VA^{-1}U \end{matrix}\right]
[I−VA−10I][AVUC]=[A0UC−VA−1U]
消除第(1,2)项(列变换):
[
A
U
V
C
]
[
I
−
A
−
1
U
0
I
]
=
[
A
0
V
C
−
V
A
−
1
U
]
\left[\begin{matrix} A&U\\ V&C \end{matrix}\right]\left[\begin{matrix} I&-A^{-1}U\\ 0&I \end{matrix}\right]=\left[\begin{matrix} A&0\\ V&C-VA^{-1}U \end{matrix}\right]
[AVUC][I0−A−1UI]=[AV0C−VA−1U]
于是有:
[
I
0
−
V
A
−
1
I
]
[
A
U
V
C
]
[
I
−
A
−
1
U
0
I
]
=
[
A
0
0
C
−
V
A
−
1
U
]
\left[\begin{matrix} I&0\\ -VA^{-1}&I \end{matrix}\right]\left[\begin{matrix} A&U\\ V&C \end{matrix}\right]\left[\begin{matrix} I&-A^{-1}U\\ 0&I \end{matrix}\right]=\left[\begin{matrix} A&0\\ 0&C-VA^{-1}U \end{matrix}\right]
[I−VA−10I][AVUC][I0−A−1UI]=[A00C−VA−1U]
进而:
[
A
U
V
C
]
=
[
I
0
V
A
−
1
I
]
[
A
0
0
C
−
V
A
−
1
U
]
[
I
A
−
1
U
0
I
]
\left[\begin{matrix} A&U\\ V&C \end{matrix}\right]=\left[\begin{matrix} I&0\\ VA^{-1}&I \end{matrix}\right]\left[\begin{matrix} A&0\\ 0&C-VA^{-1}U \end{matrix}\right]\left[\begin{matrix} I&A^{-1}U\\ 0&I \end{matrix}\right]
[AVUC]=[IVA−10I][A00C−VA−1U][I0A−1UI]
两边同时取逆:
[
A
U
V
C
]
−
1
=
[
I
A
−
1
U
0
I
]
−
1
[
A
0
0
C
−
V
A
−
1
U
]
−
1
[
I
0
V
A
−
1
I
]
−
1
=
[
I
−
A
−
1
U
0
I
]
[
A
−
1
0
0
(
C
−
V
A
−
1
U
)
−
1
]
[
I
0
−
V
A
−
1
I
]
=
[
A
−
1
+
A
−
1
U
(
C
−
V
A
−
1
U
)
−
1
V
A
−
1
−
A
−
1
U
(
C
−
V
A
−
1
U
)
−
1
−
(
C
−
V
A
−
1
U
)
−
1
V
A
−
1
(
C
−
V
A
−
1
U
)
−
1
]
\begin{aligned} \left[\begin{matrix} A&U\\ V&C \end{matrix}\right]^{-1}&=\left[\begin{matrix} I&A^{-1}U\\ 0&I \end{matrix}\right]^{-1}\left[\begin{matrix} A&0\\ 0&C-VA^{-1}U \end{matrix}\right]^{-1}\left[\begin{matrix} I&0\\ VA^{-1}&I \end{matrix}\right]^{-1}\\ &=\left[\begin{matrix} I&-A^{-1}U\\ 0&I \end{matrix}\right]\left[\begin{matrix} A^{-1}&0\\ 0&(C-VA^{-1}U)^{-1} \end{matrix}\right]\left[\begin{matrix} I&0\\ -VA^{-1}&I \end{matrix}\right]\\ &=\left[\begin{matrix} A^{-1}+A^{-1}U(C-VA^{-1}U)^{-1}VA^{-1}&-A^{-1}U(C-VA^{-1}U)^{-1}\\ -(C-VA^{-1}U)^{-1}VA^{-1}&(C-VA^{-1}U)^{-1} \end{matrix} \right] \end{aligned}
[AVUC]−1=[I0A−1UI]−1[A00C−VA−1U]−1[IVA−10I]−1=[I0−A−1UI][A−100(C−VA−1U)−1][I−VA−10I]=[A−1+A−1U(C−VA−1U)−1VA−1−(C−VA−1U)−1VA−1−A−1U(C−VA−1U)−1(C−VA−1U)−1]
同样的,由于
C
C
C可逆,有:
[
A
U
V
C
]
=
[
I
−
U
C
−
1
0
I
]
[
A
−
U
C
−
1
V
0
0
C
]
[
I
0
−
C
−
1
V
I
]
\left[\begin{matrix} A&U\\ V&C \end{matrix}\right]=\left[\begin{matrix} I&-UC^{-1}\\ 0&I \end{matrix}\right]\left[\begin{matrix} A-UC^{-1}V&0\\ 0&C \end{matrix}\right]\left[\begin{matrix} I&0\\ -C^{-1}V&I \end{matrix}\right]
[AVUC]=[I0−UC−1I][A−UC−1V00C][I−C−1V0I]
两边同时取逆:
[
A
U
V
C
]
−
1
=
[
I
0
C
−
1
V
I
]
−
1
[
A
−
U
C
−
1
V
0
0
C
]
−
1
[
I
U
C
−
1
0
I
]
−
1
=
[
I
0
−
C
−
1
V
I
]
[
(
A
−
U
C
−
1
V
)
−
1
0
0
C
−
1
]
[
I
−
U
C
−
1
0
I
]
=
[
(
A
−
U
C
−
1
V
)
−
1
−
(
A
−
U
C
−
1
V
)
−
1
U
C
−
1
−
C
−
1
V
(
A
−
U
C
−
1
V
)
−
1
C
−
1
V
(
A
−
U
C
−
1
V
)
−
1
U
C
−
1
+
C
−
1
]
\begin{aligned} \left[\begin{matrix} A&U\\ V&C \end{matrix}\right]^{-1}&=\left[\begin{matrix} I&0\\ C^{-1}V&I \end{matrix}\right]^{-1}\left[\begin{matrix} A-UC^{-1}V&0\\ 0&C \end{matrix}\right]^{-1}\left[\begin{matrix} I&UC^{-1}\\ 0&I \end{matrix}\right]^{-1}\\ &=\left[\begin{matrix} I&0\\ -C^{-1}V&I \end{matrix}\right]\left[\begin{matrix} (A-UC^{-1}V)^{-1}&0\\ 0&C^{-1} \end{matrix}\right]\left[\begin{matrix} I&-UC^{-1}\\ 0&I \end{matrix}\right]\\ &=\left[\begin{matrix} (A-UC^{-1}V)^{-1}&-(A-UC^{-1}V)^{-1}UC^{-1}\\ -C^{-1}V(A-UC^{-1}V)^{-1}&C^{-1}V(A-UC^{-1}V)^{-1}UC^{-1}+C^{-1} \end{matrix} \right] \end{aligned}
[AVUC]−1=[IC−1V0I]−1[A−UC−1V00C]−1[I0UC−1I]−1=[I−C−1V0I][(A−UC−1V)−100C−1][I0−UC−1I]=[(A−UC−1V)−1−C−1V(A−UC−1V)−1−(A−UC−1V)−1UC−1C−1V(A−UC−1V)−1UC−1+C−1]
对比第(1,1)项有:
(
A
−
U
C
−
1
V
)
−
1
=
A
−
1
+
A
−
1
U
(
C
−
V
A
−
1
U
)
−
1
V
A
−
1
(A-UC^{-1}V)^{-1}=A^{-1}+A^{-1}U(C-VA^{-1}U)^{-1}VA^{-1}
(A−UC−1V)−1=A−1+A−1U(C−VA−1U)−1VA−1
证毕。
( a I n + b J n ) − 1 = 1 a ( I n + b a J n ) − 1 (aI_n+bJ_n)^{-1}=\frac{1}{a}(I_n+\frac{b}{a}J_n)^{-1} (aIn+bJn)−1=a1(In+abJn)−1,取 U = b a 1 n U=\frac{b}{a}1_n U=ab1n, V = 1 n ′ V=1_n' V=1n′即得。
∣ a I n + b J n ∣ = ∣ a + b b . . . b b a + b . . . b . . . . . . . . . . . . b b . . . a + b ∣ = ( a + n b ) ∣ 1 b . . . b 1 a + b . . . b . . . . . . . . . . . . 1 b . . . a + b ∣ = ( a + n b ) ∣ 1 b . . . b 0 a . . . b . . . . . . . . . . . . 0 0 . . . a ∣ = a n − 1 ( a + n b ) \begin{aligned} |aI_n+bJ_n|&=\left|\begin{matrix} a+b&b&...&b\\ b&a+b&...&b\\ ...&...&...&...\\ b&b&...&a+b \end{matrix} \right|\\&=(a+nb)\left|\begin{matrix} 1&b&...&b\\ 1&a+b&...&b\\ ...&...&...&...\\ 1&b&...&a+b \end{matrix} \right|\\&=(a+nb)\left|\begin{matrix} 1&b&...&b\\ 0&a&...&b\\ ...&...&...&...\\ 0&0&...&a \end{matrix} \right|=a^{n-1}(a+nb) \end{aligned} ∣aIn+bJn∣=∣∣∣∣∣∣∣∣a+bb...bba+b...b............bb...a+b∣∣∣∣∣∣∣∣=(a+nb)∣∣∣∣∣∣∣∣11...1ba+b...b............bb...a+b∣∣∣∣∣∣∣∣=(a+nb)∣∣∣∣∣∣∣∣10...0ba...0............bb...a∣∣∣∣∣∣∣∣=an−1(a+nb)
2. 广义逆
2.1 定义
令 A A A是任意 m × n m\times n m×n矩阵,称矩阵 A † A^\dagger A†是 A A A的广义逆矩阵,若 A † A^\dagger A†满足一下四个条件(常称为Moore-Penrose条件):
(i)
A
A
†
A
=
A
AA^\dagger A=A
AA†A=A;
(ii)
A
†
A
A
†
=
A
†
A^\dagger AA^\dagger=A^\dagger
A†AA†=A†;
(iii)
A
A
†
AA^\dagger
AA†为Hermitian矩阵,即
A
A
†
=
(
A
A
†
)
H
AA^\dagger=(AA^\dagger)^H
AA†=(AA†)H;
(iv)
A
†
A
A^\dagger A
A†A为Hermitian矩阵,即
A
†
A
=
(
A
†
A
)
H
A^\dagger A=(A^\dagger A)^H
A†A=(A†A)H.
根据满足Moore-Penrose条件的多少,可以对广义逆矩阵进行分类:
(1)满足全部四个条件的矩阵
A
†
A^\dagger
A†称为
A
A
A的Moore-Penrose逆矩阵;
(2)只满足条件(i)和(ii)的矩阵称为
A
A
A的自反广义逆矩阵;
(3)满足条件(i)(ii)(iii)的矩阵称为
A
A
A的正规化广义逆矩阵;
(4)满足条件(i)(ii)(iv)的矩阵称为
A
A
A的弱广义逆矩阵。
2.2 广义逆的存在唯一性
任意 m × n m\times n m×n矩阵 A A A,其Moore-Penrose逆矩阵存在且唯一。
证明:
(存在性)
若
A
A
A为零矩阵,显然零矩阵就是
A
A
A的广义逆。
若
A
≠
0
A\neq 0
A=0,则
A
A
A有奇异值分解,即存在正交矩阵
U
U
U和
V
V
V使得
A
=
U
d
i
a
g
{
σ
1
,
.
.
,
σ
r
,
0
,
.
.
.
,
0
}
V
H
A=Udiag\{\sigma_1,..,\sigma_r,0,...,0\}V^H
A=Udiag{σ1,..,σr,0,...,0}VH
令 A † = V d i a g { σ 1 − 1 , . . , σ r − 1 , 0 , . . . , 0 } U H A^\dagger=Vdiag\{\sigma_1^{-1},..,\sigma_r^{-1},0,...,0\}U^H A†=Vdiag{σ1−1,..,σr−1,0,...,0}UH,可以验证 A † A^\dagger A†就是 A A A的广义逆。
(唯一性)
设
B
B
B是
A
A
A的另一个广义逆,即满足Moore-Penrose四个条件。
A
†
=
A
†
A
A
†
=
A
†
(
A
A
†
)
H
=
A
†
(
A
†
)
H
A
H
=
A
†
(
A
†
)
H
(
A
B
A
)
H
=
A
†
(
A
†
)
H
A
H
B
H
A
H
=
A
†
(
A
A
†
)
H
(
A
B
)
H
=
A
†
A
A
†
A
B
=
A
†
A
B
=
A
†
A
(
B
A
B
)
=
A
†
A
A
H
B
H
B
=
A
H
(
A
†
)
H
A
H
B
H
B
=
(
A
A
†
A
)
H
B
H
B
=
A
H
B
H
B
=
(
B
A
)
H
B
=
B
A
B
=
B
\begin{aligned} A^\dagger&=A^\dagger AA^\dagger=A^\dagger (AA^\dagger)^H=A^\dagger (A^\dagger)^HA^H=A^\dagger (A^\dagger)^H(ABA)^H=A^\dagger (A^\dagger)^HA^HB^HA^H \\&=A^\dagger (AA^\dagger)^H(AB)^H=A^\dagger AA^\dagger AB=A^\dagger AB=A^\dagger A(BAB)=A^\dagger AA^HB^HB \\&=A^H(A^\dagger)^HA^HB^HB=(AA^\dagger A)^HB^HB=A^HB^HB=(BA)^HB=BAB=B \end{aligned}
A†=A†AA†=A†(AA†)H=A†(A†)HAH=A†(A†)H(ABA)H=A†(A†)HAHBHAH=A†(AA†)H(AB)H=A†AA†AB=A†AB=A†A(BAB)=A†AAHBHB=AH(A†)HAHBHB=(AA†A)HBHB=AHBHB=(BA)HB=BAB=B
其他类型的广义逆矩阵均不是唯一的,关于其唯一性条件可参考:曹东, 杨成. 广义逆矩阵的唯一性[J]. 中南民族大学学报(自然科学版), 1998(1):78-80.