关于矩阵的逆有很多性质和定理,例如,可逆矩阵一定是方阵、满秩矩阵、非奇异矩阵,可逆矩阵的行列式的值不为零等等。在证明一个矩阵是不可逆矩阵时,Strang教授讲了一种几何的思路:
矩阵不可逆的证明
根据可逆矩阵的定义,如果方阵 A ∗ B = I \mathbf{A} * \mathbf{B}=\mathbf{I} A∗B=I,则 A \mathbf{A} A和 B \mathbf{B} B互称逆矩阵。下面是一个二维不可逆矩阵的例子,有矩阵 A = [ 1 2 2 4 ] \mathbf{A}=\begin{bmatrix}1&2\\2&4\end{bmatrix} A=[1224],如果 A \mathbf{