线性代数:矩阵的逆

本文探讨了矩阵的逆,强调了可逆矩阵的特性,如方阵、满秩和非奇异。通过Strang教授的几何证明方法,解释了为何特定矩阵不可逆。此外,介绍了利用高斯-若尔当消元法求解矩阵逆的过程,将矩阵逆的求解视为多个方程组的解决任务。
摘要由CSDN通过智能技术生成

关于矩阵的逆有很多性质和定理,例如,可逆矩阵一定是方阵、满秩矩阵、非奇异矩阵,可逆矩阵的行列式的值不为零等等。在证明一个矩阵是不可逆矩阵时,Strang教授讲了一种几何的思路:

矩阵不可逆的证明

根据可逆矩阵的定义,如果方阵 A ∗ B = I \mathbf{A} * \mathbf{B}=\mathbf{I} AB=I,则 A \mathbf{A} A B \mathbf{B} B互称逆矩阵。下面是一个二维不可逆矩阵的例子,有矩阵 A = [ 1 2 2 4 ] \mathbf{A}=\begin{bmatrix}1&2\\2&4\end{bmatrix} A=[1224],如果 A \mathbf{

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值