第四章-朴素贝叶斯朴素吗?

你觉得朴素贝叶斯朴素吗? 个人觉得,一点也不朴素,如同“平凡出真知”,朴素贝叶斯还是很挺厉害的。如果想要了解朴素贝叶斯,那么需要先了解贝叶斯估计极大似然估计

极大似然估计

对于一个数据集T服从概率分布P,但是P中参数未知,针对极大似然估计,就是将未知参数看作一个定值,从而找未知参数能使得数据集T发生的概率最大。
极 大 似 然 估 计 : 假 设 某 个 数 据 集 T ( x 1 , x 2 , . . . , x n ) 服 从 正 态 分 布 X   N ( μ , σ 2 ) , 但 是 某 具 体 参 数 θ 未 知 , 如 何 通 过 极 大 似 然 估 计 得 到 θ ^ 使 得 随 机 样 本 出 现 的 概 率 最 大 ? 求 解 过 程 : ( 1 ) 正 态 分 布 下 μ 的 极 大 似 然 估 计 是 : f ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 ( 2 ) 损 失 函 数 : L ( μ ) = ∏ i = 1 n 1 2 π σ e − ( x i − μ ) 2 2 σ 2 ( 3 ) 取 对 数 : ln ⁡ L ( μ ) = − n l n ( 2 π ) 1 2 σ 2 ∑ i = 1 n ( x i − μ ) 2 ( 4 ) 求 导 : ∂ ln ⁡ L ( μ ) ∂ μ = − 1 σ 2 ∑ i = 1 n ( x i − μ ) 2 ( 5 ) 令 导 数 为 0 : ∂ ln ⁡ L ( μ ) ∂ μ = 0 = > μ ^ = 1 n ∑ i = 1 n x i = x ‾ 极大似然估计:\\ 假设某个数据集T(x_1,x_2,...,x_n)服从正态分布X~N(\mu,\sigma^2),但是某具体参数\theta未知,\\ 如何通过极大似然估计得到\hat{\theta}使得随机样本出现的概率最大?\\ 求解过程:(1) 正态分布下\mu的极大似然估计是:\\ f(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}}\\ (2)损失函数:L(\mu)=\prod_{i=1}^n\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x_i-\mu)^2}{2\sigma^2}}\\ (3)取对数:\ln L(\mu)=-nln(\sqrt{2\pi})\frac{1}{2\sigma^2}\sum_{i=1}^n(x_i-\mu)^2 \\ (4)求导:\frac{\partial \ln L(\mu)}{\partial \mu}=-\frac{1}{\sigma^2}\sum_{i=1}^n(x_i-\mu)^2 \\ (5)令导数为0:\frac{\partial \ln L(\mu)}{\partial \mu}=0 => \hat{\mu}=\frac{1}{n}\sum_{i=1}^n x_i = \overline{x} T(x1,x2,...,xn)X N(μ,σ2),θθ^使?:(1)μ:f(x)=2π σ1e2σ2(xμ)2(2)L(μ)=i=1n2π σ1e2σ2(xiμ)2(3)lnL(μ)=nln(2π )2σ21i=1n(xiμ)2(4)μlnL(μ)=σ21i=1n(xiμ)2(5)0μlnL(μ)=0=>μ^=n1i=1nxi=x

贝叶斯估计

相比较贝叶斯估计,极大似然估计会出现概率为0的情况。

假 设 样 本 D ( x 1 , x 2 . . . x n ) 是 正 态 分 布 N ( μ , σ 2 ) , 其 中 σ 2 已 知 。 假 设 μ 的 先 验 分 布 是 正 态 分 布 N ( 0 , τ 2 ) , 如 果 每 个 样 本 的 概 率 独 立 且 同 步 分 布 , 那 么 贝 叶 斯 估 计 ? ( 1 ) 第 一 步 : 假 设 数 据 集 D 的 全 概 率 为 P ( D ) , 那 么 p ( μ ∣ D ) = P ( D ∣ μ ) P ( μ ) P ( D ) , 其 中 P ( μ ) 是 服 从 N ( 0 , τ 2 ) 分 布 的 先 验 概 率 , 从 而 得 到 L ( μ ) : L ( μ ) = P ( μ ∣ D ) = P ( D ∣ μ ) P ( μ ) P ( D ) = P ( μ ) P ( x 1 ∣ μ ) P ( x 2 ∣ μ ) . . . P ( x n ∣ μ ) ∫ P ( μ , x 1 , x 2 , . . . x n ) d μ , 由 此 看 出 ∫ P ( μ , x 1 , x 2 , . . . x n ) d μ 是 一 个 常 数 , 可 以 记 作 K 。 = K 1 2 π τ e − μ 2 2 τ 2 ∏ i = 1 n 1 2 π σ e − ( x i − μ ) 2 2 σ 2 ( 2 ) 第 二 步 : 取 对 数 。 ln ⁡ P ( μ ∣ D ) = − μ 2 2 τ 2 K + ∑ i = 1 n ( − ( x i − μ ) 2 2 σ 2 ) ( 3 ) 第 三 步 : 求 导 。 ∂ l n ∂ μ = − μ τ 2 + ∑ i = 1 n ( − ( x i − μ ) σ 2 ) ( 4 ) 第 四 步 : 令 导 数 为 0 。 可 得 到 : μ ^ = ∑ i = 1 n x i n + σ 2 τ 2 由 此 可 以 看 出 , 当 n → ∞ , 贝 叶 斯 估 计 概 率 和 极 大 似 然 估 计 概 率 是 差 不 多 的 , 但 是 如 果 n → 0 , 贝 叶 斯 估 计 不 会 等 于 0 , 相 对 而 言 , 更 加 精 确 些 。 假设样本D(x_1,x_2...x_n)是正态分布N(\mu,\sigma^2),其中\sigma^2已知。\\ 假设\mu的先验分布是正态分布N(0,\tau^2),如果每个样本的概率独立且同步分布,那么贝叶斯估计?\\ (1)第一步:假设数据集D的全概率为P(D),那么p(\mu|D) = \frac{P(D|\mu)P(\mu)}{P(D)},\\ 其中P(\mu)是服从N(0,\tau^2)分布的先验概率,从而得到L(\mu): L(\mu)=P(\mu|D)=\frac{P(D|\mu)P(\mu)}{P(D)}\\ =\frac{P(\mu)P(x_1|\mu)P(x_2|\mu)...P(x_n|\mu)}{\int P(\mu,x_1,x_2,...x_n)d\mu},由此看出\int P(\mu,x_1,x_2,...x_n)d\mu是一个常数,可以记作K。\\ = K\frac{1}{\sqrt{2\pi}\tau}e^{-\frac{\mu^2}{2\tau^2}} \prod_{i=1}^n\frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x_i-\mu)^2}{2\sigma^2}} \\ (2) 第二步:取对数。\ln P(\mu|D)=-\frac{\mu^2}{2\tau^2} K + \sum_{i=1}^n(-\frac{(x_i-\mu)^2}{2\sigma^2})\\ (3) 第三步:求导。\frac{\partial ln}{\partial \mu}=-\frac{\mu}{\tau^2} + \sum_{i=1}^n(-\frac{(x_i-\mu)}{\sigma^2})\\ (4)第四步:令导数为0。可得到:\hat{\mu}=\frac{\sum_{i=1}^n x_i}{n+\frac{\sigma^2}{\tau^2}}\\ 由此可以看出,当n \rightarrow \infty,贝叶斯估计概率和极大似然估计概率是差不多的,\\ 但是如果n \rightarrow 0,贝叶斯估计不会等于0,相对而言,更加精确些。 D(x1,x2...xn)N(μ,σ2),σ2μN(0,τ2)(1)DP(D),p(μD)=P(D)P(Dμ)P(μ),P(μ)N(0,τ2)L(μ):L(μ)=P(μD)=P(D)P(Dμ)P(μ)=P(μ,x1,x2,...xn)dμP(μ)P(x1μ)P(x2μ)...P(xnμ),P(μ,x1,x2,...xn)dμK=K2π τ1e2τ2μ2i=1n2π σ1e2σ2(xiμ)2(2)lnP(μD)=2τ2μ2K+i=1n(2σ2(xiμ)2)(3)μln=τ2μ+i=1n(σ2(xiμ))(4)0:μ^=n+τ2σ2i=1nxin,n0,0

朴素贝叶斯法

朴素贝叶斯(Native Bayes)法是基于贝叶斯定理与特征条件独立假设的分类方法。

朴素贝叶斯实际上学习到的是生成数据机制,因此属于生成模型

朴素贝叶斯法的基本假设是条件独立性。

朴素贝叶斯模型

设 输 入 空 间 χ ⊆ R n 为 n 维 向 量 的 集 合 , 输 出 空 间 维 类 标 记 集 合 Y = ( c 1 , c 2 , . . c K ) 。 输 入 为 特 征 向 量 x ∈ χ , 输 出 标 记 y ∈ Y , P ( X , Y ) 是 X 和 Y 的 联 合 概 率 分 布 。 训 练 数 据 集 T = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , . . . ( x N , y N ) } 。 朴 素 贝 叶 斯 分 类 时 , 对 给 定 的 输 入 x , 朴 素 贝 叶 斯 分 类 器 模 型 如 下 : y = f ( x ) = a r g m a x P ( Y = c K ) ∏ j P ( X ( j ) = x ( j ) ∣ Y = c K ) ∑ K P ( Y = c K ) ∏ j P ( X ( j ) = x ( j ) ∣ Y = c K ) 设输入空间\chi \subseteq R^n为n维向量的集合,输出空间维类标记集合Y=(c_1,c_2,..c_K)。\\ 输入为特征向量x \in \chi,输出标记y\in Y,P(X,Y)是X和Y的联合概率分布。\\ 训练数据集T=\{(x_1,y_1),(x_2,y_2),...(x_N,y_N)\}。\\ 朴素贝叶斯分类时,对给定的输入x,朴素贝叶斯分类器模型如下:\\ y=f(x)=arg max\frac{P(Y=c_K)\prod_jP(X^{(j)}=x^{(j)}|Y=c_K)}{\sum_K P(Y=c_K)\prod_jP(X^{(j)}=x^{(j)}|Y=c_K)} χRnnY=(c1,c2,..cK)xχ,yY,P(X,Y)XYT={(x1,y1),(x2,y2),...(xN,yN)}x,y=f(x)=argmaxKP(Y=cK)jP(X(j)=x(j)Y=cK)P(Y=cK)jP(X(j)=x(j)Y=cK)

损失函数

朴素贝叶斯法将实例分到后验概率最大的类中,这损失函数正符合0-1损失函数。根据期望风险最小化准则得到后验概率最大化准则:
f ( x ) = a r g m a x c K P ( c K ∣ X = x ) f(x)=arg max_{c_K} P(c_K|X=x) f(x)=argmaxcKP(cKX=x)
参数估计就是采用上面刚开始谈到的极大似然估计贝叶斯估计

朴素贝叶斯算法

输 入 : 训 练 数 据 集 T = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , . . . ( x N , y N ) } , 其 中 x i = ( x i ( 1 ) , x i ( 2 ) , . . . x i ( n ) ) T , x i ( j ) 表 示 第 i 个 样 本 的 j 个 特 征 , x i ( j ) ∈ { a j 1 , a j 2 . . . a j S j } , a j l 是 第 j 个 特 征 可 能 取 得 第 l 个 值 , j = 1 , 2.. n , l = 1 , 2 , . . S j , y i ∈ { c 1 , c 2 , . . . c K } ; 实 例 x ; 输 出 : 实 例 x 的 分 类 。 ( 1 ) 计 算 先 验 概 率 以 及 每 个 条 件 概 率 P ( Y = c K ) = ∑ i = 1 N I ( y i = c K ) N , k = 1 , 2 , . . . K P ( X ( j ) = a j l ∣ Y = c K ) = ∑ i = 1 N I ( x i ( j ) = a j l , y i = c K ) ∑ i = 1 N I ( y i = c K ) , j = 1 , 2... n ; l = 1 , 2 , . . S j ; k = 1 , 2 , . . . K ( 2 ) 计 算 每 个 标 签 下 的 实 例 的 概 率 P ( Y = c K ) ∏ j = 1 n P ( X ( j ) = x ( j ) ∣ Y = c K ) , k = 1 , 2... K ( 3 ) 确 定 的 实 例 x 的 类 。 y = a r g m a x c K P ( Y = c K ) ∏ j = 1 n P ( X ( j ) = x ( j ) ∣ Y = c K ) 输入:训练数据集T=\{(x_1,y_1),(x_2,y_2),...(x_N,y_N)\},其中x_i=(x_i^{(1)},x_i^{(2)},...x_i^{(n)})^T,\\ x_i^{(j)}表示第i个样本的j个特征,x_i^{(j)} \in \{a_{j1},a_{j2}...a_{jS_j}\},\\ a_{jl}是第j个特征可能取得第l个值,j=1,2..n,l=1,2,..S_j,y_i \in \{c_1,c_2,...c_K\};实例x; 输出:实例x的分类。\\ (1)计算先验概率以及每个条件概率\\ P(Y=c_K)=\frac{\sum_{i=1}^N I(y_i=c_K)}{N},k=1,2,...K \\ P(X^{(j)}=a_{jl}|Y=c_K)=\frac{\sum_{i=1}^NI(x_i^{(j)}=a_{jl},y_i=c_K)}{\sum_{i=1}^NI(y_i=c_K)},j=1,2...n;l=1,2,..S_j;k=1,2,...K \\ (2) 计算每个标签下的实例的概率 \\ P(Y=c_K)\prod_{j=1}^nP(X^{(j)}=x^{(j)}|Y=c_K),k=1,2...K \\ (3)确定的实例x的类。\\ y=arg max_{c_K} P(Y=c_K)\prod_{j=1}^nP(X^{(j)}=x^{(j)}|Y=c_K) T={(x1,y1),(x2,y2),...(xN,yN)}xi=(xi(1),xi(2),...xi(n))T,xi(j)ij,xi(j){aj1,aj2...ajSj},ajljlj=1,2..n,l=1,2,..Sj,yi{c1,c2,...cK}x;x(1)P(Y=cK)=Ni=1NI(yi=cK),k=1,2,...KP(X(j)=ajlY=cK)=i=1NI(yi=cK)i=1NI(xi(j)=ajl,yi=cK),j=1,2...n;l=1,2,..Sj;k=1,2,...K(2)P(Y=cK)j=1nP(X(j)=x(j)Y=cK),k=1,2...K(3)xy=argmaxcKP(Y=cK)j=1nP(X(j)=x(j)Y=cK)

在朴素贝叶斯估计中,条件概率的贝叶斯估计是:
P λ ( X ( j ) = a j l ∣ Y = c K ) = ∑ i = 1 N I ( x i ( j ) = a j l , y i = c K ) + λ ∑ i = 1 N I ( y i = c K ) + S j λ 当 λ ≥ 0 , 等 价 于 在 随 机 变 量 上 各 个 取 值 的 频 数 上 赋 予 一 个 正 数 λ 。 当 λ = 0 , 贝 叶 斯 估 计 等 于 极 大 似 然 估 计 。 常 取 λ = 1 , 这 时 称 为 拉 普 拉 斯 平 滑 ( L a p l a c e S m o o t h i n g ) 。 此 时 有 : P λ ( X ( j ) = a j l ∣ Y = c K ) > 0 ∑ l = 1 S j P ( X ( j ) = a j l ∣ Y = c K ) = 1 P λ ( X ( j ) = a j l ∣ Y = c K ) = ∑ i = 1 N I ( x i ( j ) = a j l , y i = c K ) + λ ∑ i = 1 N I ( y i = c K ) + S j λ 当 λ ≥ 0 , 等 价 于 在 随 机 变 量 上 各 个 取 值 的 频 数 上 赋 予 一 个 正 数 λ 。 当 λ = 0 , 贝 叶 斯 估 计 等 于 极 大 似 然 估 计 。 常 取 λ = 1 , 这 时 称 为 拉 普 拉 斯 平 滑 ( L a p l a c e S m o o t h i n g ) 。 此 时 有 : P λ ( X ( j ) = a j l ∣ Y = c K ) > 0 ∑ l = 1 S j P ( X ( j ) = a j l ∣ Y = c K ) = 1 P_{\lambda}(X^{(j)}=a_{jl}|Y=c_K)=\frac{\sum_{i=1}^NI(x_i^{(j)}=a_{jl},y_i=c_K)+\lambda}{\sum_{i=1}^NI(y_i=c_K)+S_j\lambda} \\ 当\lambda \geq 0,等价于在随机变量上各个取值的频数上赋予一个正数\lambda。\\ 当\lambda=0,贝叶斯估计等于极大似然估计。常取\lambda=1,这时称为拉普拉斯平滑(Laplace Smoothing)。此时有:\\ P_{\lambda}(X^{(j)}=a_{jl}|Y=c_K) > 0 \\ \sum_{l=1}^{S_j} P(X^{(j)}=a_{jl}|Y=c_K) = 1P_{\lambda}(X^{(j)}=a_{jl}|Y=c_K)=\frac{\sum_{i=1}^NI(x_i^{(j)}=a_{jl},y_i=c_K)+\lambda}{\sum_{i=1}^NI(y_i=c_K)+S_j\lambda} \\ 当\lambda \geq 0,等价于在随机变量上各个取值的频数上赋予一个正数\lambda。\\ 当\lambda=0,贝叶斯估计等于极大似然估计。常取\lambda=1,这时称为拉普拉斯平滑(Laplace Smoothing)。此时有:\\ P_{\lambda}(X^{(j)}=a_{jl}|Y=c_K) > 0 \\ \sum_{l=1}^{S_j} P(X^{(j)}=a_{jl}|Y=c_K) = 1 Pλ(X(j)=ajlY=cK)=i=1NI(yi=cK)+Sjλi=1NI(xi(j)=ajl,yi=cK)+λλ0,λλ=0λ=1,(LaplaceSmoothing):Pλ(X(j)=ajlY=cK)>0l=1SjP(X(j)=ajlY=cK)=1Pλ(X(j)=ajlY=cK)=i=1NI(yi=cK)+Sjλi=1NI(xi(j)=ajl,yi=cK)+λλ0,λλ=0λ=1,(LaplaceSmoothing):Pλ(X(j)=ajlY=cK)>0l=1SjP(X(j)=ajlY=cK)=1
先验概率的贝叶斯估计是:
P λ ( Y = c K ) = ∑ i = 1 N I ( y i = c K ) + λ N + K λ , k = 1 , 2 , 3... K , l = 1 , 2 , 3... S j P_{\lambda}(Y=c_K) = \frac{\sum_{i=1}^N I(y_i=c_K)+\lambda}{N+K\lambda},k=1,2,3...K,l=1,2,3...S_j Pλ(Y=cK)=N+Kλi=1NI(yi=cK)+λ,k=1,2,3...K,l=1,2,3...Sj

小结

朴素贝叶斯是在条件独立性的基础上的,由于这一假设,模型包含的条件概率的数量大大减少,朴素贝叶斯法的学习与预测大为简化。因此朴素贝叶斯法高效,且易于实现,缺点就是分类的性能不一定很高

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值