理论力学专题----小振动

文章探讨了理论力学中的小振动现象,专注于质点在稳定平衡点附近微小振动的分析。内容包括平衡点类型的识别,势能和动能的小量展开,以及如何解出振动的本征频率。此外,还涉及了自由振动、阻尼振动、受迫振动和共振等主题。
摘要由CSDN通过智能技术生成

理论力学专题----小振动

  • 各个质点在平衡位置附近作微振动,且平衡点的类型是稳定平衡点,即偏离平衡时,系统的势能增加。对于不稳定平衡和随遇平衡,系统无法产生往复振动
    • 广义坐标一般取 零阶量(平衡位置) 一阶量(振动量)

小量展开

V(q)=V(0)+\frac{\partial V}{\partial q_i} |_0+\frac{1}{2}\frac{\partial^2 V}{\partial q_j \partial q_k } |_0 q_j q_k +...\approx \frac{1}{2}k_{jk} q_j q_k

解题方法

  • 确定平衡位置
  • 调整广义坐标是的平衡位置处于所有q_j = 0 处
  • 在平衡位置处将势能函数展开并保留到二阶小量
  • 将系统总动能展开并保留到二阶小量
  • 写出久期方程,解出本征频率

对于自由度为2的保守体系的自由振动

\left\{\begin{matrix} \frac{d}{dt}\frac{\partial T}{\partial \dot{q_1}}-\frac{\partial T}{\partial q_1} +\frac{\partial V}{\partial q_1}=0\\ \frac{d}{dt}\frac{\partial T}{\partial \dot{q_2}}-\frac{\partial T}{\partial q_2} +\frac{\partial V}{\partial q_2}=0 \end{matrix}\right.

阻尼振动 

受迫振动

共振

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

River Chandler

谢谢,我会更努力学习工作的!!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值