电动力学专题:相对论性带电粒子

文章探讨了在非保守系统中,尤其是涉及带电粒子在电磁场中的运动时,如何利用拉格朗日和哈密顿的形式主义来描述其运动方程。拉格朗日函数和哈密顿量在处理相对论性问题时扮演关键角色,同时强调了洛伦兹力的非保守性质和四维时空的不变性。此外,还提到了广义动量的概念及其在带电粒子运动中的应用。
摘要由CSDN通过智能技术生成
  • 拉格朗日形式
    • 保守力场(在其中沿任何闭合路径所做的功为零的力场)L=T-V
    • 对于非保守系统(洛伦兹力不是保守力),只要找出一个函数使得该系统的运动方程化为拉格朗日方程即可使用分析力学的方法研究系统的运动

  • 电动力学专题:相对论性带电粒子
  • 相对论中的光速不变性,要求光在运动时的空间和时间的参量变化保持下式不变

ds=\sqrt{c^2dt^2 -d\vec{r}\cdot d\vec{r} }=0

  • 质能公式

\begin{matrix} M=\gamma m&E = M c^2\\ \beta = \frac{v}{c} & \gamma =\frac{1}{\sqrt{1-\beta^2}} \end{matrix}

  • 四维时空的“位移”

\begin{matrix} d\vec{r}^{(4)} = (dx,dy,dz,dt) \\ d\tau = |d\vec{r}^{(4)}|/(ic) = \frac{dt}{\gamma} \end{matrix}

非相对论形式

  • 运动方程:\frac{d\vec{p}}{dt}=q(\vec{E}+\vec{v}\times\vec{B})
  • 整理得:\left\{\begin{matrix} \frac{d}{dt}(\vec{p}+q\vec{A})=-q\triangledown (\varphi-\vec{v}\cdot\vec{A})\\ \vec{p}=\frac{m_0\vec{v}}{\sqrt{1-\frac{v^2}{c^2}}}\\ p_i=\frac{\partial }{\partial v_i}(-m_0c^2\sqrt{1-\frac{v^2}{c^2}})\\ A_i=\frac{\partial}{\partial v_i}\vec{v}\cdot \vec{A} \end{matrix}\right.
  • 运动方程可以被改写成拉格朗日形式:\left\{\begin{matrix} \frac{d}{dt}\frac{\partial L}{\partial v_i}-\frac{\partial L}{\partial x_i}=0\\ L=-m_0c^2\sqrt{1-\frac{v^2}{c^2}}-q(\varphi-\vec{v}\cdot\vec{A}) \end{matrix}\right.

带电粒子在电磁场中的拉格朗日函数

  • 四维时空的位移矢量

\begin{matrix} d\vec{r}^{(4)} = (dx,dy,dz,dt) \end{matrix}

  • 空间电磁场由四维电磁场势能向量描述

\left\{\begin{matrix} \vec{A}^{(4)}=(\vec{A},i\varphi/c)\\ U_\mu=\gamma_\mu(\nu_1,\nu_2,\nu_3,ic)\\ A_\mu U_\mu = \gamma(\vec{A}\cdot\vec{v}-\varphi) \end{matrix}\right.

作用量函数

dS=-mc\sqrt{-d\vec{r}^{(4)}\cdot d\vec{r}^{(4)}}+e(\vec{A}\cdot d\vec{r}-\varphi dt)

拉格朗日函数

L=\frac{-mc^2}{\gamma}+e\vec{A}\cdot\vec{v}-e\varphi

  • 广义动量\vec{p}=m\gamma\vec{v}+e\vec{A}
  • 拉格朗日方程\frac{d}{dt}(m\gamma \vec{V}+e\vec{A})=e\bigtriangledown (\vec{v}\cdot \vec{A})-e\bigtriangledown \varphi
  • 洛伦兹力方程\frac{d(m\gamma \vec{v})}{dt}=e(\vec{E}+\vec{v}\times\vec{B})

m\frac{d}{d\tau}\begin{bmatrix} u_x\\ u_y\\ u_z\\ u_t \end{bmatrix}=\begin{bmatrix} 0 &B_z &-B_y &-iE_x/c \\ -B_z & 0 & B_x& -iE_y/c\\ B_y & -B_x & 0 & -iE_z/c\\ iE_x/c & iE_y/c & iE_z/c & 0 \end{bmatrix}\begin{bmatrix} u_x\\ u_y\\ u_z\\ u_t \end{bmatrix}

  • 上式中的反对称阵[F_{ij}].求其本征值方程\lambda^4+\lambda^2(\vec{B}^2-\vec{E}^2/c^2)-(\vec{B}\cdot\vec{E}/c)^2=0
  • 可以证明,\gamma L=-m_0c^2+qA_\mu U_\mu是洛伦兹不变量
  • S=\int Ldt=\gamma \int Ld\tau是洛伦兹不变量 

 

  • 哈密顿量通过构成体系的微观粒子的力学量表示体系的能量

哈密顿量

  • 哈密顿量是广义坐标和广义动量的函数H=\sum_i P_i\dot{q_i}-L
  • 广义动量(正则动量)P_i=\frac{\partial L}{\partial \dot{q_i}}
  • 哈密顿正则方程\left\{\begin{matrix} \dot{q_i}=\frac{\partial H}{\partial P_i}\\ \dot{P_i}=-\frac{\partial H}{\partial q_i} \end{matrix}\right.

带电粒子的运动情形

  • 广义动量P_l=\gamma(m_0v_l)+qA_l(带电粒子的广义动量不等于机械动量)
  • 哈密顿量H=\vec{P} \cdot \vec{v}-L=\gamma(m_0 c^2)+q\varphi=\sqrt{(P-qA)^2c^2+m_0^2c^4}+q\varphi

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

River Chandler

谢谢,我会更努力学习工作的!!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值