写在前面的话
亲爱的学弟学妹们好呀!我是你们的AI研究生学姐~今天要教大家一个超级实用的技能:如何从零开始配置PyTorch深度学习环境!
还记得我大二时第一次接触深度学习的惨痛经历吗?环境配置就卡了整整两周,差点劝退我这个计算机系的女生😭 所以今天学姐就把踩过的所有坑都告诉你们,保证让你们一次配置成功!
温馨小贴士:学姐已经把所有需要的安装包都打包好啦,国内下载超快,再也不用翻墙下载啦!文末有下载链接哦~
前期准备
首先,学姐要和大家确认一下电脑配置哦!毕竟我们要做的是深度学习,对电脑配置还是有一定要求的~
检查电脑配置
以下是学姐推荐的最低配置要求:
- 处理器:Intel i5/AMD Ryzen 5 或以上
- 内存:至少8GB,建议16GB+(学姐当年8GB内存跑模型时电脑卡得想哭😂)
- 硬盘空间:至少20GB空闲空间
- 显卡:最好有NVIDIA显卡,GTX 1050以上就很棒啦!
没有N卡的小可爱也不要担心,CPU版本的PyTorch也能学习基础知识,只是跑模型会慢一些。等你真正入门后,可以考虑蹭实验室的GPU或者使用云服务哦~
下载资源包
学姐已经把所有需要的软件打包好啦!包括:
- Anaconda安装包(最新版)
- CUDA 11.8完整安装包
- PyCharm安装包
- 详细配置视频版
- 详细安装步骤word版
下载地址:
夸克网盘链接:
https://pan.quark.cn/s/57b1c90779eb
迅雷网盘链接:
https://pan.xunlei.com/s/VOOBfQd2gWYTKmE5dA8UT_DwA1?pwd=ib69#
学姐提醒:如果一个链接打不开,可以尝试另一个哦!密码都在链接里了,复制全部内容就好~
卸载旧版本(如果有)
如果你之前有安装过Anaconda或Miniconda,建议先卸载干净再重新安装:
- 打开资源包中的
geek.exe
小工具 - 搜索"Anaconda"
- 点击卸载
- 耐心等待完成
学姐贴心提示:这个小工具比Windows自带的卸载程序强太多了!它可以自动清理残留文件和注册表,不然可能会有冲突问题哦~
安装步骤
- 双击资源包中的Anaconda安装文件(文件名类似于
Anaconda3-2024.xx-Windows-x86_64.exe
)
- 点击【Next】进入安装向导
- 同意许可协议,点击【I Agree】
- 选择【Just Me】(推荐),然后点击【Next】
- 选择安装位置(超级重要!):
学姐严重警告⚠️:千万不要安装在C盘!Anaconda体积巨大,会占用很多系统盘空间!
建议路径:
D:\software\anaconda3
(根据你的实际磁盘情况调整)
-
高级选项设置:
- ✅ 勾选"Add Anaconda3 to my PATH environment variable"
- ✅ 勾选"Register Anaconda3 as my default Python"
虽然很多教程说不要添加到PATH,但学姐觉得添加了会方便很多!特别是对初学者来说~
-
点击【Install】开始安装
这一步可能需要等待几分钟,学姐建议去喝杯奶茶放松一下😋
-
安装完成后,点击【Next】,然后【Finish】完成安装
不需要安装VSCode,我们等下会用PyCharm~
测试安装
-
按Win+R,输入
cmd
打开命令提示符 -
输入以下命令:
conda --version
-
如果显示版本号(比如
conda 23.7.2
),恭喜你安装成功啦!🎉
如果提示"不是内部或外部命令",别担心!安装资源包中我写了详细的手动配置步骤。如果还不行,可能是环境变量没有正确设置,可以看看学姐准备的常见问题解决方案~
CUDA配置
学姐温馨提示:如果你没有NVIDIA显卡,可以直接跳到下一节哦!
检查显卡型号
首先,让我们确认一下你的电脑是否有N卡:
- 右键点击桌面的【此电脑】图标
- 选择【管理】
- 点击【设备管理器】
- 展开【显示适配器】
- 查看是否有NVIDIA开头的显卡型号
CUDA安装
CUDA是NVIDIA开发的一个并行计算平台,简单来说就是让你的深度学习任务能在显卡上飞速运行的工具!
- 双击资源包中的CUDA安装文件(
cuda_11.8.0_xxx.exe
)
- 选择【自定义安装】(很重要!)
- 取消勾选【Visual Studio Integration】(这个不需要,省空间~)
-
点击【下一步】,然后点击【安装】
-
耐心等待安装完成
学姐有话说:市面上有很多版本的CUDA,但不是最新的就是最好的!因为PyTorch对CUDA版本有特定要求,学姐推荐CUDA 11.8,兼容性最好!
配置环境变量
安装完CUDA后,我们需要设置一下环境变量:
-
右键点击【此电脑】→【属性】→【高级系统设置】→【环境变量】
-
在【系统变量】中找到
Path
,点击【编辑】 -
点击【新建】,添加以下路径:
- C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA
- C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\bin
- C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\libnvvp
- C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\x64
添加完成后,点击确定保存设置。
- 点击【确定】保存更改
验证CUDA
-
打开命令提示符(Win+R,输入cmd)
-
输入以下命令:
nvcc --version
-
如果显示CUDA版本信息,就说明安装成功啦!
学姐的小秘密:如果这一步出问题,别着急!即使这里显示错误,等下安装完PyTorch后,只要torch.cuda.is_available()
返回True
就可以了~
PyTorch安装
终于到了最关键的一步!安装PyTorch本身!
创建虚拟环境
学姐的小技巧:为每个项目创建独立的环境是个好习惯!这样不同项目之间就不会互相影响啦~
-
点击【开始菜单】,搜索并打开【Anaconda Prompt】
-
输入以下命令创建名为
pytorch
的环境:conda create -n pytorch2.3.1 python=3.9
-
输入
y
确认创建 -
等待环境创建完成后,激活环境:
conda activate pytorch2.3.1
成功激活后,命令行前面会显示
(pytorch2.3.1)
这是虚拟环境名
打开官网https://pytorch.org/get-started/previous-versions/
找到与CUDA 11.8匹配的PyTorch版本,如PyTorch 2.3.1
!!复制conda安装命令(不要复制pip安装命令)
- 粘贴并执行PyTorch安装命令(使用之前复制的命令)
- 如果安装过程中断了,不要慌!重新输入上面的命令继续安装就好了~
验证PyTorch安装
-
在命令行中输入
python
进入Python环境 -
输入以下代码:
import torch print(torch.__version__) print(torch.cuda.is_available())
-
第一行会显示PyTorch版本,第二行如果显示
True
,说明PyTorch可以使用GPU了!如果显示False
但你确实有N卡,可能需要检查一下CUDA配置。
PyCharm配置
PyCharm是学姐最喜欢的Python IDE,界面美观,功能强大,自动补全代码超级爽!强烈推荐给大家使用~
资源包中有详细的安装的视频版本,如果需要看的直接观看即可。
安装PyCharm
-
双击资源包中的PyCharm安装文件
-
点击【Next】
-
选择安装路径(记得选择非C盘位置)
-
在安装选项页面全部勾选:
- ✅ 创建桌面快捷方式
- ✅ 添加到PATH
- ✅ 关联.py文件
-
点击【Install】开始安装
-
安装完成后点击【Finish】
学姐小贴士:社区版和专业版区别不大,学生可以用教育邮箱免费申请专业版,但社区版也完全够用啦!
配置PyTorch 开发环境
-
首次启动PyCharm,选择UI主题(学姐喜欢暗色主题,写代码不伤眼~)
-
创建新项目:
- 点击【New Project】
- 设置项目位置(不要放C盘)
- 点击【Previously configured interpreter】
- 点击右边的【…】按钮
- 选择【Conda Environment】
- 选择【Use existing environment】
- 从下拉列表中选择刚才创建的
pytorch
环境 - 点击【OK】
-
点击【Create】创建项目
学姐提醒:记得每次打开新项目都要选择正确的Python解释器哦!
写在最后
亲爱的学弟学妹们,环境配置只是万里长征第一步,真正的挑战和乐趣在后面等着你们!希望你们能像学姐一样,在AI的世界里找到自己的热爱和方向。
如果在学习过程中遇到任何问题,不要害羞,随时来找学姐问!记得点个关注,学姐后续会更新更多有趣实用的AI入门教程哦~
祝大家学习顺利,早日成为AI大神!
学姐爱你们~😘