【超详细教程】2025最新Pytorch安装教程( PyTorch+CUDA+Anaconda+PyCharm)

写在前面的话

亲爱的学弟学妹们好呀!我是你们的AI研究生学姐~今天要教大家一个超级实用的技能:如何从零开始配置PyTorch深度学习环境!

还记得我大二时第一次接触深度学习的惨痛经历吗?环境配置就卡了整整两周,差点劝退我这个计算机系的女生😭 所以今天学姐就把踩过的所有坑都告诉你们,保证让你们一次配置成功!

温馨小贴士:学姐已经把所有需要的安装包都打包好啦,国内下载超快,再也不用翻墙下载啦!文末有下载链接哦~

前期准备

首先,学姐要和大家确认一下电脑配置哦!毕竟我们要做的是深度学习,对电脑配置还是有一定要求的~

检查电脑配置

以下是学姐推荐的最低配置要求:

  • 处理器:Intel i5/AMD Ryzen 5 或以上
  • 内存:至少8GB,建议16GB+(学姐当年8GB内存跑模型时电脑卡得想哭😂)
  • 硬盘空间:至少20GB空闲空间
  • 显卡:最好有NVIDIA显卡,GTX 1050以上就很棒啦!

没有N卡的小可爱也不要担心,CPU版本的PyTorch也能学习基础知识,只是跑模型会慢一些。等你真正入门后,可以考虑蹭实验室的GPU或者使用云服务哦~

下载资源包

学姐已经把所有需要的软件打包好啦!包括:

  • Anaconda安装包(最新版)
  • CUDA 11.8完整安装包
  • PyCharm安装包
  • 详细配置视频版
  • 详细安装步骤word版

下载地址:
夸克网盘链接:
https://pan.quark.cn/s/57b1c90779eb

迅雷网盘链接:
https://pan.xunlei.com/s/VOOBfQd2gWYTKmE5dA8UT_DwA1?pwd=ib69#

学姐提醒:如果一个链接打不开,可以尝试另一个哦!密码都在链接里了,复制全部内容就好~

卸载旧版本(如果有)

如果你之前有安装过Anaconda或Miniconda,建议先卸载干净再重新安装:

  1. 打开资源包中的geek.exe小工具
  2. 搜索"Anaconda"
  3. 点击卸载
  4. 耐心等待完成

学姐贴心提示:这个小工具比Windows自带的卸载程序强太多了!它可以自动清理残留文件和注册表,不然可能会有冲突问题哦~

在这里插入图片描述

安装步骤

  1. 双击资源包中的Anaconda安装文件(文件名类似于Anaconda3-2024.xx-Windows-x86_64.exe

在这里插入图片描述

  1. 点击【Next】进入安装向导

在这里插入图片描述

  1. 同意许可协议,点击【I Agree】

在这里插入图片描述

  1. 选择【Just Me】(推荐),然后点击【Next】

在这里插入图片描述

  1. 选择安装位置(超级重要!):

    学姐严重警告⚠️:千万不要安装在C盘!Anaconda体积巨大,会占用很多系统盘空间!

    建议路径:D:\software\anaconda3(根据你的实际磁盘情况调整)

在这里插入图片描述

  1. 高级选项设置

    • ✅ 勾选"Add Anaconda3 to my PATH environment variable"
    • ✅ 勾选"Register Anaconda3 as my default Python"

    虽然很多教程说不要添加到PATH,但学姐觉得添加了会方便很多!特别是对初学者来说~

在这里插入图片描述

  1. 点击【Install】开始安装

    这一步可能需要等待几分钟,学姐建议去喝杯奶茶放松一下😋

在这里插入图片描述

  1. 安装完成后,点击【Next】,然后【Finish】完成安装

    不需要安装VSCode,我们等下会用PyCharm~

在这里插入图片描述

测试安装

  1. 按Win+R,输入cmd打开命令提示符

  2. 输入以下命令:

    conda --version
    
  3. 如果显示版本号(比如conda 23.7.2),恭喜你安装成功啦!🎉

如果提示"不是内部或外部命令",别担心!安装资源包中我写了详细的手动配置步骤。如果还不行,可能是环境变量没有正确设置,可以看看学姐准备的常见问题解决方案~

在这里插入图片描述

CUDA配置

学姐温馨提示:如果你没有NVIDIA显卡,可以直接跳到下一节哦!

检查显卡型号

首先,让我们确认一下你的电脑是否有N卡:

  1. 右键点击桌面的【此电脑】图标
  2. 选择【管理】
  3. 点击【设备管理器】
  4. 展开【显示适配器】
  5. 查看是否有NVIDIA开头的显卡型号

在这里插入图片描述

CUDA安装

CUDA是NVIDIA开发的一个并行计算平台,简单来说就是让你的深度学习任务能在显卡上飞速运行的工具!

  1. 双击资源包中的CUDA安装文件(cuda_11.8.0_xxx.exe

在这里插入图片描述

  1. 选择【自定义安装】(很重要!)

在这里插入图片描述

  1. 取消勾选【Visual Studio Integration】(这个不需要,省空间~)

在这里插入图片描述

  1. 点击【下一步】,然后点击【安装】

  2. 耐心等待安装完成

学姐有话说:市面上有很多版本的CUDA,但不是最新的就是最好的!因为PyTorch对CUDA版本有特定要求,学姐推荐CUDA 11.8,兼容性最好!

在这里插入图片描述

配置环境变量

安装完CUDA后,我们需要设置一下环境变量:

  1. 右键点击【此电脑】→【属性】→【高级系统设置】→【环境变量】

  2. 在【系统变量】中找到Path,点击【编辑】

  3. 点击【新建】,添加以下路径:

    • C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA
    • C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\bin
    • C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\libnvvp
    • C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\x64

添加完成后,点击确定保存设置。

在这里插入图片描述

  1. 点击【确定】保存更改

验证CUDA

  1. 打开命令提示符(Win+R,输入cmd)

  2. 输入以下命令:

    nvcc --version
    
  3. 如果显示CUDA版本信息,就说明安装成功啦!

学姐的小秘密:如果这一步出问题,别着急!即使这里显示错误,等下安装完PyTorch后,只要torch.cuda.is_available()返回True就可以了~

在这里插入图片描述

PyTorch安装

终于到了最关键的一步!安装PyTorch本身!

创建虚拟环境

学姐的小技巧:为每个项目创建独立的环境是个好习惯!这样不同项目之间就不会互相影响啦~

  1. 点击【开始菜单】,搜索并打开【Anaconda Prompt】

  2. 输入以下命令创建名为pytorch的环境:

    conda create -n pytorch2.3.1 python=3.9
    
  3. 输入y确认创建

  4. 等待环境创建完成后,激活环境:

    conda activate pytorch2.3.1
    

    成功激活后,命令行前面会显示(pytorch2.3.1)这是虚拟环境名

打开官网https://pytorch.org/get-started/previous-versions/

找到与CUDA 11.8匹配的PyTorch版本,如PyTorch 2.3.1

!!复制conda安装命令(不要复制pip安装命令)

在这里插入图片描述

  1. 粘贴并执行PyTorch安装命令(使用之前复制的命令)
  2. 如果安装过程中断了,不要慌!重新输入上面的命令继续安装就好了~

在这里插入图片描述

验证PyTorch安装

  1. 在命令行中输入python进入Python环境

  2. 输入以下代码:

    import torch
    print(torch.__version__)
    print(torch.cuda.is_available())
    
  3. 第一行会显示PyTorch版本,第二行如果显示True,说明PyTorch可以使用GPU了!如果显示False但你确实有N卡,可能需要检查一下CUDA配置。

在这里插入图片描述

PyCharm配置

PyCharm是学姐最喜欢的Python IDE,界面美观,功能强大,自动补全代码超级爽!强烈推荐给大家使用~

资源包中有详细的安装的视频版本,如果需要看的直接观看即可。

安装PyCharm

  1. 双击资源包中的PyCharm安装文件

  2. 点击【Next】

  3. 选择安装路径(记得选择非C盘位置)

  4. 在安装选项页面全部勾选:

    • ✅ 创建桌面快捷方式
    • ✅ 添加到PATH
    • ✅ 关联.py文件
  5. 点击【Install】开始安装

  6. 安装完成后点击【Finish】

学姐小贴士:社区版和专业版区别不大,学生可以用教育邮箱免费申请专业版,但社区版也完全够用啦!

在这里插入图片描述

配置PyTorch 开发环境

  1. 首次启动PyCharm,选择UI主题(学姐喜欢暗色主题,写代码不伤眼~)

  2. 创建新项目:

    • 点击【New Project】
    • 设置项目位置(不要放C盘)
    • 点击【Previously configured interpreter】
    • 点击右边的【…】按钮
    • 选择【Conda Environment】
    • 选择【Use existing environment】
    • 从下拉列表中选择刚才创建的pytorch环境
    • 点击【OK】
  3. 点击【Create】创建项目

学姐提醒:记得每次打开新项目都要选择正确的Python解释器哦!

写在最后

亲爱的学弟学妹们,环境配置只是万里长征第一步,真正的挑战和乐趣在后面等着你们!希望你们能像学姐一样,在AI的世界里找到自己的热爱和方向。

如果在学习过程中遇到任何问题,不要害羞,随时来找学姐问!记得点个关注,学姐后续会更新更多有趣实用的AI入门教程哦~

祝大家学习顺利,早日成为AI大神!

学姐爱你们~😘

### Ubuntu 安装仅 CPU 版本 PyTorch 教程 #### 准备工作 为了确保顺利安装,建议先更新系统的软件包列表并升级现有软件包: ```bash sudo apt update && sudo apt upgrade -y ``` 对于 Python 开发环境的支持[^1],需要提前安装一些必要的开发库来构建扩展模块。 #### 创建虚拟环境 (可选) 创建一个新的 Python 虚拟环境有助于隔离不同项目的依赖关系。这一步不是强制性的但是推荐的做法: ```bash python3 -m venv pytorch-env source pytorch-env/bin/activate ``` 一旦激活了新的虚拟环境, 所有的Python包都将被安装在这个环境中而不是全局位置. #### 更换 pip 源加速下载速度 考虑到网络因素可能影响到安装效率,在中国地区可以通过更换为清华大学镜像源等方式加快下载速度[^2]: ```bash pip install --upgrade pip pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple ``` #### 安装仅限于 CPU 的 PyTorch 针对只使用 CPU 进行计算的情况,可以选择特定版本的 PyTorch 来减少不必要的 GPU 支持组件加载。通过 `pip` 命令可以直接指定安装不带 CUDA 加速功能的纯 CPU 版本: ```bash pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu ``` 这条命令会从官方 PyTorch 仓库获取适用于 Linux 平台上的稳定版 CPU-only 构建,并完成本地安装过程。 #### 验证安装成功与否 最后验证是否正确安装PyTorch 及其基本功能正常运作: ```python import torch print(torch.__version__) print('CUDA available:', torch.cuda.is_available()) ``` 如果输出显示 CUDA 不可用,则说明已经成功配置了一个纯粹基于 CPU 工作流下的 PyTorch 环境。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值