线性代数|二元线性方程组与二阶行列式

前置知识:


设二元线性方程组:
{ a 11 x 1 + a 12 x 2 = b 1 a 21 x 1 + a 22 x 2 = b 2 (1) \begin{cases} a_{11} x_1 + a_{12} x_2 = b_1 \\ a_{21} x_1 + a_{22} x_2 = b_2 \end{cases} \tag{1} {a11x1+a12x2=b1a21x1+a22x2=b2(1)
a 11 a 22 − a 12 a 21 ≠ 0 a_{11} a_{22} - a_{12} a_{21} \ne 0 a11a22a12a21=0 时,用消元法分别消去未知数 x 2 x_2 x2 x 1 x_1 x1,可以求得方程组 (1) 的解为
x 1 = b 1 a 22 − a 12 b 2 a 11 a 22 − a 12 a 21 , x 2 = a 11 b 2 − b 1 a 21 a 11 a 22 − a 12 a 21 (2) x_1 = \frac{b_1 a_{22} - a_{12} b_2}{a_{11} a_{22} - a_{12} a_{21}}, \hspace{1em} x_2 = \frac{a_{11} b_2 - b_1 a_{21}}{a_{11} a_{22} - a_{12} a_{21}} \tag{2} x1=a11a22a12a21b1a22a12b2,x2=a11a22a12a21a11b2b1a21(2)
利用二阶行列式的概念,若记
D = ∣ a 11 a 12 a 21 a 22 ∣ = a 11 a 22 − a 12 a 21 D 1 = ∣ b 1 a 12 b 2 a 22 ∣ = b 1 a 22 − a 12 b 2 D 2 = ∣ a 11 b 1 a 21 b 2 ∣ = a 11 b 2 − b 1 a 21 \begin{align*} D & = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11} a_{22} - a_{12} a_{21} \\ D_1 & = \begin{vmatrix} b_1 & a_{12} \\ b_2 & a_{22} \end{vmatrix} = b_1 a_{22} - a_{12} b_2 \\ D_2 & = \begin{vmatrix} a_{11} & b_1 \\ a_{21} & b_2 \end{vmatrix} = a_{11} b_2 - b_1 a_{21} \end{align*} DD1D2= a11a21a12a22 =a11a22a12a21= b1b2a12a22 =b1a22a12b2= a11a21b1b2 =a11b2b1a21
那么式 (2) 可以写成
x 1 = D 1 D = ∣ b 1 a 12 b 2 a 22 ∣ ∣ a 11 a 12 a 21 a 22 ∣ , x 2 = D 2 D = ∣ a 11 b 1 a 21 b 2 ∣ ∣ a 11 a 12 a 21 a 22 ∣ (3) x_1 = \frac{D_1}{D} = \frac{\begin{vmatrix} b_1 & a_{12} \\ b_2 & a_{22} \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}}, \hspace{1em} x_2 = \frac{D_2}{D} = \frac{\begin{vmatrix} a_{11} & b_1 \\ a_{21} & b_2 \end{vmatrix}}{\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}} \tag{3} x1=DD1= a11a21a12a22 b1b2a12a22 ,x2=DD2= a11a21a12a22 a11a21b1b2 (3)
式 (3) 中的 D D D 是由方程组的系数所确定的二阶行列式(称系数行列式); D 1 D_1 D1 是用常数项 b 1 , b 2 b_1,b_2 b1,b2 替换 D D D 中第 1 列的元素 a 11 , a 21 a_{11},a_{21} a11,a21 所得的二阶行列式; D 2 D_2 D2 是用常数项 b 1 , b 2 b_1,b_2 b1,b2 替换 D D D 中第 2 列的元素 a 21 , a 22 a_{21},a_{22} a21,a22 所得的二阶行列式。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

长行

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值