线性代数|证明:矩阵特征值的倒数是其逆矩阵的特征值

本文探讨了如果矩阵A可逆且λ是A的一个特征值,则1/λ必为A的逆矩阵的一个特征值。通过数学推导证明了这一性质。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

性质 1 若 λ \lambda λ A \boldsymbol{A} A 的特征值,当 A \boldsymbol{A} A 可逆时, 1 λ \frac{1}{\lambda} λ1 A − 1 \boldsymbol{A}^{-1} A1 的特征值。

证明 因为 λ \lambda λ A \boldsymbol{A} A 的特征值,所以有 p ≠ 0 \boldsymbol{p} \ne 0 p=0 使 A p = λ p \boldsymbol{A} \boldsymbol{p} = \lambda \boldsymbol{p} Ap=λp。于是,当 A \boldsymbol{A} A 可逆时,因为 A p = λ p \boldsymbol{A} \boldsymbol{p} = \lambda \boldsymbol{p} Ap=λp,所以
p = λ A − 1 p \boldsymbol{p} = \lambda \boldsymbol{A}^{-1} \boldsymbol{p} p=λA1p
因为 p ≠ 0 \boldsymbol{p} \ne 0 p=0,所以 λ ≠ 0 \lambda \ne 0 λ=0。从而上式两边可以同除 λ \lambda λ,有
A − 1 p = 1 λ p = λ − 1 p \boldsymbol{A}^{-1} \boldsymbol{p} = \frac{1}{\lambda} \boldsymbol{p} = \lambda^{-1} \boldsymbol{p} A1p=λ1p=λ1p
从而 1 λ \frac{1}{\lambda} λ1 A − 1 \boldsymbol{A}^{-1} A1 的特征值。得证。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

长行

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值