https://www.pytorchtutorial.com/pytorch-custom-dataset-examples/
https://blog.csdn.net/l8947943/article/details/103733473
1. 我们需要加载自己的数据集,使用Dataset和DataLoader
Dataset
:是被封装进DataLoader里,实现该方法封装自己的数据和标签。DataLoader
:被封装入DataLoader迭代器里,实现该方法达到数据的划分。
2.Dataset
主要继承该方法必须实现两个方法:
_getitem_()
_len_()
import torch
import numpy as np
# 定义GetLoader类,继承Dataset方法,并重写__getitem__()和__len__()方法
class GetLoader(torch.utils.data.Dataset):
# 初始化函数,得到数据
def __init__(self, data_root, data_label):
self.data = data_root
self.label = data_label
# index是根据batchsize划分数据后得到的索引,最后将data和对应的labels进行一起返回
def __getitem__(self, index):
data = self.data[index]
labels = self.label[index]
return data, labels
# 该函数返回数据大小长度,目的是DataLoader方便划分,如果不知道大小,DataLoader会一脸懵逼
def __len__(self):
return len(self.data)
# 随机生成数据,大小为10 * 20列
source_data = np.random.rand(10, 20)
# 随机生成标签,大小为10 * 1列
source_label = np.random.randint(0,2,(10, 1))
# 通过GetLoader将数据进行加载,返回Dataset对象,包含data和labels
torch_data = GetLoader(source_data, source_label)
3.DataLoader
提供对Dataset
的操作,操作如下:
torch.utils.data.DataLoader(dataset,batch_size,shuffle,drop_last,num_workers)
数含义如下:
- dataset: 加载torch.utils.data.Dataset对象数据
- batch_size: 每个batch的大小
- shuffle:是否对数据进行打乱
- drop_last:是否对无法整除的最后一个datasize进行丢弃
- um_workers:表示加载的时候子进程数,一般GPU使用
因此,在实现过程中我们测试如下(紧跟上述用例):
from torch.utils.data import DataLoader
# 读取数据
datas = DataLoader(torch_data, batch_size=6, shuffle=True, drop_last=False, num_workers=2)
此时,我们的数据已经加载完毕了,只需要在训练过程中使用即可。
4.查看数据
我们可以通过迭代器(enumerate)
进行输出数据,测试如下:
for i, data in enumerate(datas):
# i表示第几个batch, data表示该batch对应的数据,包含data和对应的labels
print("第 {} 个Batch \n{}".format(i, data))
5.使用自己保存的“npy”数据集进行加载
定义一个继承dataset的类
import numpy as np
from torch.utils.data.dataset import Dataset
import torch
# 定义CustomDataset类,继承Dataset方法,并重写__getitem__()和__len__()方法
class CustomDataset(torch.utils.data.Dataset):
# 初始化函数,得到数据
def __init__(self, pathData, pathLabel):
self.data = np.load(pathData) # 传入了dataset X的路径,并使用np.load进行加载数据
self.label = np.load(pathLabel) # 传入了label Y的路径
# index是根据batchsize划分数据后得到的索引,最后将data和对应的labels进行一起返回
def __getitem__(self, index):
data = self.data[index]
labels = self.label[index]
return data, labels
# 该函数返回数据大小长度,目的是DataLoader方便划分,如果不知道大小,DataLoader会一脸懵逼
def __len__(self):
return len(self.data)
加载数据
我自己的数据集格式:
from torch.utils.data import DataLoader
from CustomDataset import CustomDataset
pathX = './datasetXPro.npy'
pathY = './datasetYPro.npy'
torch_data = CustomDataset(pathX, pathY)
# 读取数据
datas = DataLoader(torch_data, batch_size=6, shuffle=True, drop_last=False, num_workers=2)
for i, data in enumerate(datas):
# i表示第几个batch, data表示该batch对应的数据,包含data和对应的labels
print("第 {} 个Batch \n{}".format(i, data))