torch.load_state_dict()函数的用法总结

本文探讨了在PyTorch中如何使用torch.load_state_dict()加载预训练模型权重,重点讲解了strict参数的作用以及在模型微调时的灵活应用。当strict=False时,允许不完全匹配的权重加载,适合处理模型结构调整情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在Pytorch中构建好一个模型后,一般需要进行预训练权重中加载。torch.load_state_dict()函数就是用于将预训练的参数权重加载到新的模型之中,操作方式如下所示:

sd_net = torchvision.models.resnte50(pretrained=False)
sd_net.load_state_dict(torch.load('*.pth'), strict=True)

在本博文中重点关注的是 属性 strict; 当strict=True,要求预训练权重层数的键值与新构建的模型中的权重层数名称完全吻合;如果新构建的模型在层数上进行了部分微调,则上述代码就会报错:说key对应不上。

此时,如果我们采用strict=False 就能够完美的解决这个问题。也即,与训练权重中与新构建网络中匹配层的键值就进行使用,没有的就默认初始化

评论 23
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值