load_state_dict参数及函数使用

在PyTorch中,load_state_dict 方法是 torch.nn.Module 类的一个成员函数,用于将参数字典(通常称为 state_dict)加载到模型中。这个参数字典包含了模型中所有可训练参数的映射,键是参数的名称(通常是层次化的,以反映模型的结构),值是与这些参数对应的张量(tensors)。

load_state_dict 方法的参数

  • state_dict (dict): 包含要加载的参数的字典。键是参数的名称,值是与这些名称对应的参数张量。
  • strict (bool, 可选): 默认为 True。当设置为 True 时,load_state_dict 将期望 state_dict 中的键完全匹配模型中的键。如果有任何不匹配,将抛出错误。当设置为 False 时,将忽略那些不匹配的键。

使用 load_state_dict 方法

以下是如何使用 load_state_dict 方法的一个基本示例:

import to
`model.load_state_dict()` 函数是 PyTorch 中用于加载模型参数函数。它的作用是将预训练或保存的模型参数应用到指定的模型对象上。 `load_state_dict()` 函数的基本语法如下: ```python model.load_state_dict(state_dict, strict=True) ``` 其中,`state_dict` 是一个包含模型参数的字典对象,它通常是通过 `torch.load()` 函数加载预训练或保存的模型文件得到的。`strict` 是一个布尔值参数,用于指定是否严格加载参数使用 `load_state_dict()` 函数可以完成以下任务: 1. 加载预训练模型参数:可以将预训练模型的权重加载到指定的模型对象中。通常,需要先创建一个与预训练模型结构相同的空模型对象,然后使用 `load_state_dict()` 函数将预训练模型的参数应用到该模型对象上。 2. 加载保存的模型参数:可以将保存的模型参数加载到指定的模型对象中。在使用 `torch.save()` 函数保存模型时,通常使用 `model.state_dict()` 方法获取模型的参数字典,然后将其保存到文件中。加载时,可以使用 `torch.load()` 函数加载保存的模型文件,并使用 `load_state_dict()` 函数将加载的参数应用到模型对象上。 示例代码: ```python # 创建空模型对象 model = MyModel() # 加载预训练模型参数 pretrained_state_dict = torch.load('pretrained_model.pt') model.load_state_dict(pretrained_state_dict) # 或者加载保存的模型参数 saved_state_dict = torch.load('saved_model.pt') model.load_state_dict(saved_state_dict) ``` 通过以上代码,可以加载预训练模型的参数或保存的模型的参数,并将其应用到 `MyModel` 类型的 `model` 对象上。这样,`model` 对象就具有了与预训练模型或保存的模型相匹配的权重。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

浩瀚之水_csdn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值