前面的章节我们讨论过逻辑、数学、实证科学以及相互间的关系,我们也讨论过自然语言,并将其与实证科学理论、逻辑、数学进行了比较。有一个问题是:逻辑与数学之间是什么样的关系?对此问题前面的论述没有专门讨论过。这是一个涉及二者基础的非常专业的问题,理应由专业的学者来阐述。为了内容与理解更加完整,这里也简单讲解本书对此问题的理解。
从起源上说,数学源于实际的问题,数学最初的部分,接近于某种实证科学。数学后续的发展更多转向符号上的虚拟构建,所发展出的各数学分支,仍可以与现实世界进行匹配,为不同领域提供规律与事实描述的工具,并通过计算解释领域现象,或解决实际的问题。实际应用时的数学计算,其结果仍可对应至外在对象或它们的特征。逻辑源于对符号使用的总结,包括对自然语言与数学中符号使用的总结。逻辑中基础的部分——命题逻辑,其演算基于命题的真值,真值是语句上的一种属性。从这里的分析可见,逻辑的抽象层次更高。
另一方面,现代逻辑被认为是以数学方法来研究逻辑而得到的,表现为逻辑学的符号结果也形成一些抽象的符号演算系统。乔姆斯基对自然语言的研究也采用了同类的方法。可以看到的一种做法是:将现代符号逻辑、形式文法都归为离散数学的一部分,问题变成了数学的范围如何界定,这不是这里的观点。本书认为层次的差异始终是需要区分的,它们代表了二个不同的方向。逻辑是去抽象那些基础的通用的规则,它们使符号使用能够自洽。数学是在遵循逻辑约束下去探讨各种可能性。理论上,逻辑的本质使其可用于认知方向的任何符号应用,包括数学。数学的建构必须遵循逻辑,在此意义上,我们可以说数学是逻辑的一种具体化。
结合前面章节的论述,可以发现我们的符号结果(或知识)实际是分层的,具体的层次如下:
- 逻辑;
- 数学;
- 各领域科学理论;
- 各领域科学的应用。
对于此层次体系,从应用的角度,上层的内容投射应用于下层,即第1层会应用于第2、3、4层;第2层会应用于第3、4层;第3层会应用于第4层。第4层是各领域科学对本领域现象、经验的解释。我们的知识形成一个连续统,也许可以增加一个层次:5、经验描述层,对应着2.4节所讲到的经验原语。上层的内容向下投射应用时,同样的内容可以通过不断细化的实例逐层应用于下面各个层次。从构建的角度,过程中包含着从下层至上层的抽象。每一层次的内容一经形成,则不会依赖于下层的内容,而是形成单向的依赖。越上面的层次,抽象度越高,并且历史上出现的时间越晚。
本书将语言视为符号的使用,然后用符号的结果与符号的方式解析符号使用。符号的结果与符号方式分别指向了不同的语言观,它们又如何统一?这是“2.2符号结果与符号方式”一节里提出的问题。现在这一问题可以有一个初步的答案。从符号结果来说,符号使用形成的是上述层次体系的各个层次。其中每一层次反映某种类型或某种抽象度的认知,它们的性质是不一样的。从符号方式来说,在上述的层次体系中,某一层次内容向下级层次投射应用时,此层次的符号结果对下级层次来说是一种符号方式。符号的结果与符号的方式在此层次体系里统一了起来,由此,我们也不必再借助索绪尔关于语言与言语区分的理论。
本书是研究认知方向的符号使用,上述的知识层次体系是目前人类所取得的较成功的认知的核心部分。这一知识大厦的构建,自然语言的使用并不处于主要的位置。只是,自然语言仍是不可缺少的脚手架。我们需要用自然语言来对其它符号方式建立的内容进行解说或一般性交流。当数学、逻辑或其它更好的符号方式还不足够发达,找不到合适的工具用于某些领域时,我们仍会使用自然语言充当建筑的砖瓦。与逻辑、数学相比,自然语言并不是优势的工具用于表现世界或表达我们的认知。然而,可以看到很多努力仍然只是围绕着自然语言去研究符号对认知的表示。
前面讲过,对于自然语言,表达方法与表达内容是可以分开的二个方面。表达方法是基于一些主观的规则,它们不受内容的限制,任何情况下自然语言的使用始终可以产生一些表达,表达的建设性则是另一回事。这种灵活性让自然语言成为我们符号表达兜底的手段。上述知识层次体系的符号使用显示,对认知的表达不需要像自然语言那样借助主观的规则,我们可以形成一些符号演算的系统直接外化某层次某一部分认知,并且,更高抽象层次认知形成的符号结果可以用于对更具体认知的表达。由此,知识与符号变得更加不可分离。在知识层次的抽象构建过程中,是否包括其它形式的主观性?这是一个可以重新审视的古老哲学问题。
我们的认知外化为符号演算的系统,或者是采用了前述的“数学方法”,或者就是直接应用了数学。本书一开始说到认知可由符号来表现,然后说到某部分认知可由符号完整地表现,这需要建立符号与被认知对象世界一致对应关系。我们后面对科学、数学、逻辑的探讨可发现,“表现”与“一致对应”并不足以表达这里的机制。以“数学方法”外化出符号的系统,符号系统一方面是模拟出被认知的对象世界。同时这也是对我们心智能力的扩展。我们需要重新审视这里的“数学方法”,它不应简单视为数学专属的方法,而应视为一种更一般的方法。
前面关于自然语言方式与现代知识中符号使用的不同,在本书中是归为口语与书面语言的区别。口语带来了自然语言,自然语言在书面语中的对应使用是文字,文字在认知方向的使用已经发生了不同于口语阶段自然语言的一些改变,这些改变正是由逻辑、数学等符号使用的影响产生。书面语言发展出逻辑、数学、科学的符号使用是语言在认知方向专门化的发展。口语与书面语言的区别,除了起始的目标与用途不同,背后的世界观与认知方式不同外,还可归为符号媒介系统的不同,这在前面的论述中已有所涉及。接下来的章节会对这一主题进行分析与总结,内容包括了对“数学方法”的进一步解读。首先,我们讨论一下符号属性。参照传统语言学研究所建立的符号观点,通过比较来说明逻辑、数学以及自然语言第二阶段的符号使用带来了什么变化。这里传统语言学的符号观点,我们仍采用索绪尔关于符号本质的一些观点。