# -*- coding: utf-8 -*-
import numpy as np
import sklearn.preprocessing as prep
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
#xavier方式初始化权值
def xavier_init(fan_in,fan_out,constant=1):
low=-constant*np.sqrt(6.0/(fan_in+fan_out))
high=constant*np.sqrt(6.0/(fan_in+fan_out))
return tf.random_uniform((fan_in,fan_out),
minval=low,maxval=high,
dtype=tf.float32)
'''
n_input:输入层维度;
n_hidden:隐藏层维度;
n_output=n_input
'''
class AdditiveGaussianNoiseAutoencoder(object):
def __init__(self,n_input,n_hidden,transfer_function=tf.nn.softplus,
optimizer=tf.train.AdamOptimizer,scale=0.1):
self.n_input=n_input
self.n_hidden=n_hidden
self.transfer=transfer_function
self.scale=tf.placeholder(tf.float32)
self.training_scale=scale
network_weights=self._initialize_weight()#初始化权值和偏置值
self.weights=network_weights
self.x=tf.placeholder(tf.float32,[None,self.n_input])#分配内存空间
self.hidden=self.transfer(tf.add(tf.matmul(self.x+scale*tf.random_normal((n_input,)),
self.weights['w1']),self.weights['b1']))
self.reconstruction=tf.add(tf.matmul(self.hidden,self.weights['w2']),self.weights['b2'])
self.cost=0.5*tf.reduce_sum(tf.pow(tf.subtract(self.reconstruction,self.x),2.0))
self.optimizer=optimizer.minimize(self.cost)
init=tf.global_variables_initializer()
self.sess=tf.Session()
self.sess.run(init)
def _initialize_weight(self):
all_weights=dict()
all_weights['w1']=tf.Variable(xavier_init(self.n_input, self.n_hidden))
all_weights['b1']=tf.Variable(tf.zeros([self.n_hidden],dtype=tf.float32))
all_weights['w2']=tf.Variable(xavier_init(self.n_hidden, self.n_input))
all_weights['b2']=tf.Variable(tf.zeros([self.n_input],dtype=tf.float32))
return all_weights
def partial_fit(self,X):#训练优化
cost,opt=self.sess.run((self.cost,self.optimizer),feed_dict={self.x:X,
self.scale:self.training_scale})
return cost
def calc_total_cost(self,X):#计算损失,不优化
return self.sess.run(self.cost,feed_dict={self.x:X,self.scale:self.training_scale})
def transform(self,X):#压缩维度
return self.sess.run(self.hidden,feed_dict={self.x:X,self.scale:self.training_scale})
def generate(self,hidden=None):#低维变高维
if hidden is None:
hidden=np.random.normal(size=self.weights['b1'])
return self.sess.run(self.reconstruction,fedd_dict={self.hidden:hidden})
def reconstruct(self,X):#
return self.sess.run(self.reconstruction,feed_dict={self.x:X,self.scale:self.training_scale})
def getWeights(self):
return self.sess.run(self.weight['w1'])
def getBiaes(self):
return self.sess.run(self.weight['b1'])
mnist=input_data.read_data_sets("./MNIST_data",one_hot=True)
def standard_scale(X_train,X_test):
preprocessor=prep.StandardScaler().fit(X_train)
X_train=preprocessor.transform(X_train)
X_test=preprocessor.transform(X_test)
return X_train,X_test
def get_random_block_from_data(data,batch_size):
start_index=np.random.randint(0,len(data)-batch_size)
return data[start_index:(start_index+batch_size)]
X_train,X_test=standard_scale(mnist.train.images, mnist.test.images)
n_samples=int(mnist.train._num_examples)
training_epochs=20
batch_size=128
display_step=1
autoencoder=AdditiveGaussianNoiseAutoencoder(n_input=784,n_hidden=200,
transfer_function=tf.nn.softplus,
optimizer=tf.train.AdamOptimizer(learning_rate=0.001),
scale=0.01)
for epoch in range(training_epochs):
avg_cost=0
total_batch=int(n_samples/batch_size)
for i in range(total_batch):
batch_xs=get_random_block_from_data(X_train, batch_size)
cost=autoencoder.partial_fit(batch_xs)
avg_cost+=cost/n_samples *batch_size
if epoch % display_step==0:
print("Epoch:",'%04d'%(epoch+1),"cost=","{:.9f}".format(avg_cost))
print("Total cost: "+str(autoencoder.calc_total_cost(X_test)))
tensorflow学习笔记之简单自编码器实现
最新推荐文章于 2024-04-22 14:12:42 发布