tensorflow学习笔记之简单自编码器实现

# -*- coding: utf-8 -*-
import numpy as np
import sklearn.preprocessing as prep
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

#xavier方式初始化权值
def xavier_init(fan_in,fan_out,constant=1):
    low=-constant*np.sqrt(6.0/(fan_in+fan_out))
    high=constant*np.sqrt(6.0/(fan_in+fan_out))
    return tf.random_uniform((fan_in,fan_out),
                             minval=low,maxval=high,
                             dtype=tf.float32)
'''
n_input:输入层维度;
n_hidden:隐藏层维度;
n_output=n_input
'''
class AdditiveGaussianNoiseAutoencoder(object):
    def __init__(self,n_input,n_hidden,transfer_function=tf.nn.softplus,
                 optimizer=tf.train.AdamOptimizer,scale=0.1):
        self.n_input=n_input
        self.n_hidden=n_hidden
        self.transfer=transfer_function
        self.scale=tf.placeholder(tf.float32)
        self.training_scale=scale
        network_weights=self._initialize_weight()#初始化权值和偏置值
        self.weights=network_weights
        self.x=tf.placeholder(tf.float32,[None,self.n_input])#分配内存空间
        self.hidden=self.transfer(tf.add(tf.matmul(self.x+scale*tf.random_normal((n_input,)),
                                                   self.weights['w1']),self.weights['b1']))

        self.reconstruction=tf.add(tf.matmul(self.hidden,self.weights['w2']),self.weights['b2'])
        self.cost=0.5*tf.reduce_sum(tf.pow(tf.subtract(self.reconstruction,self.x),2.0))
        self.optimizer=optimizer.minimize(self.cost)
        init=tf.global_variables_initializer()
        self.sess=tf.Session()
        self.sess.run(init)

    def _initialize_weight(self):
        all_weights=dict()
        all_weights['w1']=tf.Variable(xavier_init(self.n_input, self.n_hidden))
        all_weights['b1']=tf.Variable(tf.zeros([self.n_hidden],dtype=tf.float32))
        all_weights['w2']=tf.Variable(xavier_init(self.n_hidden, self.n_input))
        all_weights['b2']=tf.Variable(tf.zeros([self.n_input],dtype=tf.float32))
        return all_weights

    def partial_fit(self,X):#训练优化
        cost,opt=self.sess.run((self.cost,self.optimizer),feed_dict={self.x:X,
                                                                   self.scale:self.training_scale})
        return cost

    def calc_total_cost(self,X):#计算损失,不优化
        return self.sess.run(self.cost,feed_dict={self.x:X,self.scale:self.training_scale})
    def transform(self,X):#压缩维度
        return self.sess.run(self.hidden,feed_dict={self.x:X,self.scale:self.training_scale})

    def generate(self,hidden=None):#低维变高维
        if hidden is None:
            hidden=np.random.normal(size=self.weights['b1'])
        return self.sess.run(self.reconstruction,fedd_dict={self.hidden:hidden})

    def reconstruct(self,X):#
        return self.sess.run(self.reconstruction,feed_dict={self.x:X,self.scale:self.training_scale})
    def getWeights(self):
        return self.sess.run(self.weight['w1'])
    def getBiaes(self):
        return self.sess.run(self.weight['b1'])

mnist=input_data.read_data_sets("./MNIST_data",one_hot=True)

def standard_scale(X_train,X_test):
    preprocessor=prep.StandardScaler().fit(X_train)
    X_train=preprocessor.transform(X_train)
    X_test=preprocessor.transform(X_test)
    return X_train,X_test

def get_random_block_from_data(data,batch_size):
    start_index=np.random.randint(0,len(data)-batch_size)
    return data[start_index:(start_index+batch_size)]

X_train,X_test=standard_scale(mnist.train.images, mnist.test.images)
n_samples=int(mnist.train._num_examples)
training_epochs=20
batch_size=128
display_step=1
autoencoder=AdditiveGaussianNoiseAutoencoder(n_input=784,n_hidden=200,
                                             transfer_function=tf.nn.softplus,
                                             optimizer=tf.train.AdamOptimizer(learning_rate=0.001),
                                             scale=0.01)
for epoch in range(training_epochs):
    avg_cost=0
    total_batch=int(n_samples/batch_size)
    for i in range(total_batch):
        batch_xs=get_random_block_from_data(X_train, batch_size)
        cost=autoencoder.partial_fit(batch_xs)
        avg_cost+=cost/n_samples *batch_size

    if epoch % display_step==0:
        print("Epoch:",'%04d'%(epoch+1),"cost=","{:.9f}".format(avg_cost))
print("Total cost: "+str(autoencoder.calc_total_cost(X_test)))





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值