误差函数(Error Function)的推导与物理意义
1. 误差函数的定义
误差函数(Error Function)定义为:
erf
(
x
)
=
2
π
∫
0
x
e
−
t
2
d
t
\text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt
erf(x)=π2∫0xe−t2dt
互补误差函数(Complementary Error Function):
erfc
(
x
)
=
1
−
erf
(
x
)
=
2
π
∫
x
∞
e
−
t
2
d
t
\text{erfc}(x) = 1 - \text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_x^\infty e^{-t^2} dt
erfc(x)=1−erf(x)=π2∫x∞e−t2dt
2. 数学推导
2.1 从高斯积分出发
考虑高斯积分:
I
=
∫
−
∞
∞
e
−
x
2
d
x
=
π
I = \int_{-\infty}^\infty e^{-x^2} dx = \sqrt{\pi}
I=∫−∞∞e−x2dx=π
通过极坐标变换可证明该积分值。将积分限改为[0,x]:
erf
(
x
)
=
2
π
∫
0
x
e
−
t
2
d
t
\text{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt
erf(x)=π2∫0xe−t2dt
2.2 级数展开
对
e
−
t
2
e^{-t^2}
e−t2进行泰勒展开后逐项积分:
erf
(
x
)
=
2
π
∑
n
=
0
∞
(
−
1
)
n
x
2
n
+
1
n
!
(
2
n
+
1
)
\text{erf}(x) = \frac{2}{\sqrt{\pi}} \sum_{n=0}^\infty \frac{(-1)^n x^{2n+1}}{n! (2n+1)}
erf(x)=π2n=0∑∞n!(2n+1)(−1)nx2n+1
2.3 渐近展开(大x近似)
erfc ( x ) ≈ e − x 2 x π ( 1 − 1 2 x 2 + 3 4 x 4 − ⋯ ) \text{erfc}(x) \approx \frac{e^{-x^2}}{x\sqrt{\pi}} \left(1 - \frac{1}{2x^2} + \frac{3}{4x^4} - \cdots \right) erfc(x)≈xπe−x2(1−2x21+4x43−⋯)
3. 基本性质
3.1 对称性
erf ( − x ) = − erf ( x ) erf ( 0 ) = 0 , erf ( ∞ ) = 1 \text{erf}(-x) = -\text{erf}(x) \\ \text{erf}(0) = 0, \quad \text{erf}(\infty) = 1 erf(−x)=−erf(x)erf(0)=0,erf(∞)=1
3.2 导数关系
d d x erf ( x ) = 2 π e − x 2 \frac{d}{dx} \text{erf}(x) = \frac{2}{\sqrt{\pi}} e^{-x^2} dxderf(x)=π2e−x2
3.3 积分关系
∫ erf ( x ) d x = x erf ( x ) + e − x 2 π + C \int \text{erf}(x) dx = x \text{erf}(x) + \frac{e^{-x^2}}{\sqrt{\pi}} + C ∫erf(x)dx=xerf(x)+πe−x2+C
4. 物理意义与应用
4.1 扩散过程
在Fick扩散定律的解中,浓度分布常表示为:
c
(
x
,
t
)
=
c
0
erfc
(
x
2
D
t
)
c(x,t) = c_0 \text{erfc}\left(\frac{x}{2\sqrt{Dt}}\right)
c(x,t)=c0erfc(2Dtx)
- x x x:距界面距离
- D D D:扩散系数
- t t t:时间
4.2 概率统计
描述正态分布的累积概率:
P
(
X
≤
x
)
=
1
2
[
1
+
erf
(
x
−
μ
σ
2
)
]
P(X \leq x) = \frac{1}{2} \left[1 + \text{erf}\left(\frac{x-\mu}{\sigma\sqrt{2}}\right)\right]
P(X≤x)=21[1+erf(σ2x−μ)]
4.3 热传导
一维热传导方程的解包含误差函数:
T
(
x
,
t
)
=
T
0
erf
(
x
2
α
t
)
T(x,t) = T_0 \text{erf}\left(\frac{x}{2\sqrt{\alpha t}}\right)
T(x,t)=T0erf(2αtx)
α
\alpha
α为热扩散系数
5. 特殊函数关系
相关函数 | 关系式 |
---|---|
正态分布 | Φ ( x ) = 1 2 [ 1 + erf ( x / 2 ) ] \Phi(x) = \frac{1}{2}[1+\text{erf}(x/\sqrt{2})] Φ(x)=21[1+erf(x/2)] |
虚误差函数 | erfi ( x ) = − i erf ( i x ) \text{erfi}(x) = -i \text{erf}(ix) erfi(x)=−ierf(ix) |
Fresnel积分 | C ( z ) + i S ( z ) = 1 + i 2 erf ( π 2 ( 1 − i ) z ) C(z)+iS(z) = \frac{1+i}{2} \text{erf}\left(\frac{\sqrt{\pi}}{2}(1-i)z\right) C(z)+iS(z)=21+ierf(2π(1−i)z) |
6. 数值计算
6.1 近似公式
erf
(
x
)
≈
1
−
(
a
1
t
+
a
2
t
2
+
a
3
t
3
)
e
−
x
2
,
t
=
1
1
+
p
x
\text{erf}(x) \approx 1 - (a_1t + a_2t^2 + a_3t^3)e^{-x^2}, \quad t=\frac{1}{1+px}
erf(x)≈1−(a1t+a2t2+a3t3)e−x2,t=1+px1
(
p
=
0.47047
p=0.47047
p=0.47047,
a
1
=
0.3480242
a_1=0.3480242
a1=0.3480242,
a
2
=
−
0.0958798
a_2=-0.0958798
a2=−0.0958798,
a
3
=
0.7478556
a_3=0.7478556
a3=0.7478556)
PS
Q:为什么要有2/√π这个系数?
A:为了让erf(∞)=1,这样更便于概率计算
Q:误差函数和正态分布什么关系?
A:标准正态分布Φ(x) = [1 + erf(x/√2)]/2
Q:什么时候会用到这个函数?
A:只要涉及"逐渐累积"的过程都会用到,比如:热量传播;粒子扩散;信号传输