泊松-玻尔兹曼方程的提出

泊松-玻尔兹曼Poisson–Boltzmann方程的提出

1.Poisson-Boltzmann方程

泊松-玻尔兹曼方程是用来计算电解质溶液中离子浓度和电荷密度分布的一个微分方程,其基本形式为
∇ 2 ϕ ( r ) = − 4 π ϵ ∑ i c i 0 z i q e − β z i q ϕ ( r ) (1) \nabla^2\phi(\textbf r)=-\frac{4\pi}{\epsilon}\sum_{i} c_i^0z_iqe^{-\beta z_iq\phi(\textbf r)} \tag{1} 2ϕ(r)=ϵ4πici0ziqeβziqϕ(r)(1)
其中,
ϕ \phi ϕ是体系的电势,
ϵ \epsilon ϵ 是溶液的介电常数,
c i 0 c_{i}^0 ci0 z i z_{i} zi分别为第 i i i 种离子的体相浓度和电荷,
β = 1 / k B T \beta =1/k_{B}T β=1/kBT, 其中 k B k_{B} kB是玻尔兹曼常数。

2.基本原理

泊松-玻尔兹曼方程实际上是通过对体系的平均力势能(Potential of Mean Force, PMF)作平均场近似而得到。从电解质溶液体系的泊松方程出发

∇ 2 ϕ ( r ) = − 4 π ϵ ∑ i z i q c i ( r ) (2) \nabla ^{2}\phi ({\textbf {r}})=-{\frac {4\pi }{\epsilon }}\sum _{i}z_{i}qc_{i}({\textbf {r}}) \tag{2} 2ϕ(r)=ϵ4πiziqci(r)(2)
而第 i i i 种离子的浓度函数 c i ( r ) c_{i}({\textbf {r}}) ci(r)可以写成

c i ( r ) = c i 0 e − β w i ( r ) (3) c_{i}({\textbf {r}})=c_{i}^{0}e^{{-\beta w_{i}({\textbf {r}})}} \tag{3} ci(r)=ci0eβwi(r)(3)
其中 w i ( r ) w_{i}({\textbf {r}}) wi(r)即为第 i i i 种离子的平均力势能。在平均场近似中,忽略离子间的关联,令平均力势能近似等于该离子的电势能
w i ( r ) ≃ z i q ϕ ( r ) (4) w_{i}({\textbf {r}})\simeq z_{i}q\phi ({\textbf {r}}) \tag{4} wi(r)ziqϕ(r)(4)
即得到泊松-玻尔兹曼方程。

3. 方程推导

首先溯源到Liouville提出的偏微分方程 ( 5 ) (5) (5)的解的形式如 ( 6 ) (6) (6)
d 2 l o g λ d u   d v ± λ 2 a 2 = 0 (5) \frac{d^2 log \lambda}{du\,dv} \pm \frac{\lambda}{2a^2} =0 \tag {5} dudvd2logλ±2a2λ=0(5)
λ ( u , v ) = 4 a 2 e ϕ ( u ) + ψ ( v ) [ 1 ± e ϕ ( u ) + ψ ( v ) ] 2 d ϕ ( u ) d u d ψ ( u ) d v (6) \lambda(u,v)=\frac{4a^2e^{\phi(u)+\psi(v)}}{[1\pm e^{\phi(u)+\psi(v)}]^2} \frac{d\phi(u)}{du} \frac{d\psi(u)}{dv} \tag{6} λ(u,v)=[1±eϕ(u)+ψ(v)]24a2eϕ(u)+ψ(v)dudϕ(u)dvdψ(u)(6)
其中
ϕ ( u ) \phi(u) ϕ(u) ψ ( v ) \psi(v) ψ(v)是任意函数。
u = v = x u=v=x u=v=x作为空间坐标变量, λ ( x ) \lambda(x) λ(x) 代表具有电量 q q q i i i离子的单位电荷密度,与该位置的静电势 q ψ ( x ) q\psi(x) qψ(x)有关,通过泊松分布函数给出
λ ( x ) ∼ e q ψ ( x ) k B T (7) \lambda(x)\sim e^{\frac{q\psi(x)}{k_BT}} \tag{7} λ(x)ekBTqψ(x)(7)
对于连续的电解质的体系,电势的微分形式为
∇ ⋅ ϵ ( r ‾ ) ⋅ ∇ ψ ‾ ( r ‾ ) = − 4 π ρ ‾ ( r ‾ ) (8) \nabla \cdot \epsilon(\underline r)\cdot \nabla \overline \psi(\underline r) = -4\pi \overline{ \rho}(\underline r) \tag{8} ϵ(r)ψ(r)=4πρ(r)(8)
其中,
ϵ ( r ‾ ) \epsilon(\underline r) ϵ(r) r ‾ \underline r r处的电解质常数,
ψ ‾ ( r ‾ ) \overline \psi(\underline r) ψ(r) 为平均静电势,
ρ ‾ ( r ‾ ) \overline{ \rho}(\underline r) ρ(r)为平均电荷密度
平均电荷密度可以用玻尔兹曼分布函数来描述, ρ ‾ P B ( r ‾ ) \overline{ \rho}_{PB}(\underline r) ρPB(r)分成两部分固定的与移动的电荷。

ρ ‾ P B ( r ‾ ) = ρ ‾ f i x e d ( r ‾ ) + ρ ‾ m o b i l e ( r ‾ ) = ∑ n = 1 N q n δ ( r ‾ − r ‾ n ) + ∑ i = 0 I e 0 z i n i e − β e 0 z i ψ ‾ ( r ‾ ) ∫ V i e − β e 0 z i ψ ‾ ( r ‾ ) d τ ≡ ∑ n = 1 N q n δ ( r ‾ − r ‾ n ) + ∑ i = 0 I e 0 z i c i R e − β e 0 z i ψ ‾ ( r ‾ ) \begin{aligned} \overline{ \rho}_{PB}(\underline r) & =\overline{ \rho}^{fixed}(\underline r) +\overline{ \rho}^{mobile}(\underline r)\\ &=\sum_{n=1}^{N} q_n\delta(\underline r- \underline r_n) + \sum_{i=0}^{I} \frac{e_0 z_i n_i e^{-\beta e_0 z_i \overline \psi(\underline r) }}{\int_{V_i} e^{-\beta e_0 z_i \overline \psi(\underline r) d\tau}}\\ &\equiv \sum_{n=1}^{N} q_n \delta(\underline r- \underline r_n) + \sum_{i=0}^{I} e_0 z_i c_i^R e^{-\beta e_0 z_i \overline \psi(\underline r) } \end{aligned} ρPB(r)=ρfixed(r)+ρmobile(r)=n=1Nqnδ(rrn)+i=0IVieβe0ziψ(r)dτe0zinieβe0ziψ(r)n=1Nqnδ(rrn)+i=0Ie0ziciReβe0ziψ(r)
因此,Poisson-Boltzmann方程的完整形式
∇ ⋅ ϵ ( r ‾ ) ⋅ ∇ ψ ‾ ( r ‾ ) = − 4 π ( ∑ n = 1 N q n δ ( r ‾ − r ‾ n ) + ∑ i = 0 I e 0 z i c i R e − β e 0 z i ψ ‾ ( r ‾ ) ) (9) \nabla \cdot \epsilon(\underline r)\cdot \nabla \overline \psi(\underline r) = -4\pi \left ( \sum_{n=1}^{N} q_n \delta(\underline r- \underline r_n) + \sum_{i=0}^{I} e_0 z_i c_i^R e^{-\beta e_0 z_i \overline \psi(\underline r) } \right) \tag{9} ϵ(r)ψ(r)=4π(n=1Nqnδ(rrn)+i=0Ie0ziciReβe0ziψ(r))(9)

其中,
N N N 是固定的源电荷,
I I I 是体系中可移动的离子,
e 0 e_0 e0 是一个质子带的电荷量,
z i z_i zi n i n_i ni 是离子的价态与数量,
c i R ≡ C i ( R ‾ ) c_i^R\equiv C_i(\underline R) ciRCi(R)是在外层 R ‾ \underline R R(电位趋近于零)范围内的离子浓度,
β = 1 / K B T \beta=1/K_BT β=1/KBT
δ ( r ‾ − r ‾ n ) \delta(\underline r- \underline r_n) δ(rrn) 为Kronecker delta 函数

δ r r n = { 1 ( r = r n ) 0 ( r ≠ r n ) \delta _{{rr_n}}=\left\{{\begin{matrix}1&(r=r_n)\\0&(r\neq r_n)\end{matrix}}\right. δrrn={10(r=rn)(r=rn)
( 9 ) (9) (9)中的指数项按照泰勒展开,并取前两项
泰勒展开
e x = 1 + x + x 2 2 + ⋅ ⋅ ⋅ e^x=1+x+\frac{x^2}{2}+\cdot \cdot \cdot ex=1+x+2x2+
x = − β e 0 z i ψ ‾ ( r ‾ ) x=-\beta e_0 z_i \overline \psi(\underline r) x=βe0ziψ(r)

e − β e 0 z i ψ ‾ ( r ‾ ) = 1 − β e 0 z i ψ ‾ ( r ‾ ) e^{-\beta e_0 z_i \overline \psi(\underline r) } = 1-\beta e_0 z_i \overline \psi(\underline r) eβe0ziψ(r)=1βe0ziψ(r)
简化后即得到Debye–Huckel方程
∇ ⋅ ϵ ( r ‾ ) ⋅ ∇ ψ ‾ ( r ‾ ) = − 4 π ( ∑ n = 1 N q n δ ( r ‾ − r ‾ n ) + ∑ i = 0 I e 0 z i c i R ( 1 − β e 0 z i ψ ‾ ( r ‾ ) ) ) (10) \nabla \cdot \epsilon(\underline r)\cdot \nabla \overline \psi(\underline r) = -4\pi \left (\sum_{n=1}^{N} q_n \delta(\underline r- \underline r_n) + \sum_{i=0}^{I} e_0 z_i c_i^R \left( 1-\beta e_0 z_i \overline \psi(\underline r)\right) \right) \tag{10} ϵ(r)ψ(r)=4π(n=1Nqnδ(rrn)+i=0Ie0ziciR(1βe0ziψ(r)))(10)
对(9)的模型可以进一步简化可得到,常用的PB方程
d 2 ψ ‾ ( x ‾ ) d x 2 = − 4 π e 0 ϵ 0 ∑ i = 0 I c i R z i e − β e 0 z i ψ ‾ ( x ) (11) \frac{d^2 \overline \psi(\overline x)}{dx^2} = -\frac{4 \pi e_0}{\epsilon_0} \sum_{i=0}^{I} c_i^Rz_i e^{-\beta e_0 z_i \overline \psi(x)} \tag{11} dx2d2ψ(x)=ϵ04πe0i=0IciRzieβe0ziψ(x)(11)

  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
Allen-Cahn方程是描述相变现象的一个数学模型,也是典型的非线性偏微分方程之一。它起初被用于材料科学研究中对二元合金凝固过程的描述,但现已广泛应用于物理化学、地球科学、生物学等领域。 Allen-Cahn方程可以用如下形式表示: ∂u/∂t = ε²∆u + u - u³ 其中,u是待求解的函数,ε是一个小的正数,表示相变的一个特征长度。方程右端的第一项描述了扩散过程,第二项表示了自由能,第三项是非线性项。该方程描述了相变界面的演化过程。 在MATLAB中,我们可以通过数值方法来求解Allen-Cahn方程。一种常见的方法是有限差分法,通过将空间和时间离散化,将偏微分方程转化为一个差分方程组。然后利用迭代的方法,求解差分方程组的解。 具体步骤如下: 1. 定义空间和时间的离散网格; 2. 初始化初值,通常可以选择一个具有两个稳定状态解的函数作为初始条件; 3. 使用差分格式,将Allen-Cahn方程转化为差分方程; 4. 迭代求解差分方程组,直到满足收敛条件; 5. 可视化结果,展示相变界面的演化过程和稳定态解。 在MATLAB中,可以使用函数如pdepe和pdepoisson进行求解。pdepe函数可以用于求解一维和二维的偏微分方程,而pdepoisson函数用于求解泊松方程。 总之,通过使用MATLAB的数值求解方法,我们可以对Allen-Cahn方程进行求解,从而研究相变界面的演化过程和稳定态解。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值