一,根据已知约束条件求解五次多项式表达式
设5次曲线的方程表达式为:
其中:
其中,是切线角,
是曲率。
故上式可写为:
对于五次多项式曲线,只要确定6个量,即可唯一确定曲线的表达式。故根据以下6个已知量:
1,起点和终点的坐标:
2,起点和终点的方向角:
3,起点和终点的曲率:
由上述6个已知量,可获得6个方程,从而求解出,唯一确定了五次多项式的表达式。
二,离散化五次多项式的表达式
!!!特别特别特别重要的经验:实际工程应用中均是使用离散化点来近似逼近连续曲线,计算机无法表达连续的曲线,连续的曲线表达式主要应用在数学领域。
离散化方式:从起点开始,每次增加固定长度的弧长来进行离散化。(不要取固定长度的
来进行离散化,容易造成离散点分布不均匀的问题,而取固定的弧长则避免了该问题)。
离散化过程举例:
步骤1,根据点处的已知条件,求出
,从而确定
的值。
在任一点处:
根据上式可得:,其中
是人为设计的值,故在任一点
处,可根据
的值求出
,从而确定
的值。
步骤2,根据五次多项式的表达式,一旦确定,则可以根据表达式确定
.
循环步骤1,步骤2,直到求出的大于终点的横坐标
,则循环结束,至此离散化完成。
结果展示:
源码下载处: