数值分析 第三章 线性方程组的迭代法

系数矩阵

符号 A 代表系数矩阵。

严格对角占优

i=1jinaij|aii|,i=1,2,...,n

对称正定

判定方法1:特征值全是正,且对称;
判定方法2:各阶顺序主子式全是正,且对称。

系数矩阵的形式化说明

A=DLU

D=diag(a11,a22,...,ann)

L=0a21a31...an10a32...an20......ann10

U=0a120a13a23............0a1na2n...an1,n0

迭代矩阵

符号 M 代表系数矩阵。

先验、后验误差

x(k)xMk1Mx(1)x(0)

x(k)xM1Mx(k)x(k1)

收敛条件

迭代矩阵 M 收敛ρ(M)<1;
迭代矩阵 M 收敛M<1.

常用的迭代解法

  1. Jacobi迭代法
    分量形式

    x(k+1)i=1aiibij=1i1aijx(k)jj=i+1naijx(k)j
    i=1,2,...,n;k=0,1,...

    矩阵形式
    B=D1(L+U)

    收敛条件
    (1) 系数矩阵 A 以及2DA都是对称正定矩阵 Jacobi迭代法收敛;
    (2) 系数矩阵 A 严格对角占优Jacobi迭代法收敛

  2. Gauss-Seidel迭代法
    分量形式

    x(k+1)i=1aiibij=1i1aijx(k+1)jj=i+1naijx(k)j
    i=1,2,...,n;k=0,1,...

    矩阵形式
    G=(DL)1U

    收敛条件
    (1) 系数矩阵 A 是对称正定矩阵Gauss-Seidel迭代法收敛;
    (2) 系数矩阵 A 严格对角占优Gauss-Seidel迭代法收敛

  3. SOR迭代法
    分量形式

    x(k+1)i=x(k)i+ωaiibij=1i1aijx(k+1)jj=inaijx(k)j
    i=1,2,...,n;k=0,1,...

    矩阵形式1

    Sω=(DωL)1[(1ω)D+ωU]

    收敛条件
    (1) SOR收敛 0<ω<2 ;
    (2)

    {A0<ω<2SOR

    (3)
    {A0<ω1SOR



  1. \pounds在编辑器中使用LaTex方式打不出来,因此将\pounds用S代替了。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值