系数矩阵
符号 A 代表系数矩阵。
严格对角占优
对称正定
判定方法1:特征值全是正,且对称;
判定方法2:各阶顺序主子式全是正,且对称。
系数矩阵的形式化说明
A=D−L−U
D=diag(a11,a22,...,ann)
−L=⎡⎣⎢⎢⎢⎢⎢⎢0a21a31...an10a32...an20......ann−10⎤⎦⎥⎥⎥⎥⎥⎥
−U=⎡⎣⎢⎢⎢⎢⎢⎢0a120a13a23............0a1na2n...an−1,n0⎤⎦⎥⎥⎥⎥⎥⎥
迭代矩阵
符号 M 代表系数矩阵。
先验、后验误差
∥∥x(k)−x∗∥∥⩽∥M∥1−∥M∥∥∥x(k)−x(k−1)∥∥
收敛条件
迭代矩阵
M
收敛
迭代矩阵
M
收敛
常用的迭代解法
Jacobi迭代法
分量形式
x(k+1)i=1aii⎛⎝bi−∑j=1i−1aijx(k)j−∑j=i+1naijx(k)j⎞⎠i=1,2,...,n;k=0,1,...
矩阵形式
B=D−1(L+U)
收敛条件
(1) 系数矩阵 A 以及2D−A 都是对称正定矩阵 ⇒ Jacobi迭代法收敛;
(2) 系数矩阵 A 严格对角占优⇒ Jacobi迭代法收敛Gauss-Seidel迭代法
分量形式
x(k+1)i=1aii⎛⎝bi−∑j=1i−1aijx(k+1)j−∑j=i+1naijx(k)j⎞⎠i=1,2,...,n;k=0,1,...
矩阵形式
G=(D−L)−1U
收敛条件
(1) 系数矩阵 A 是对称正定矩阵⇒ Gauss-Seidel迭代法收敛;
(2) 系数矩阵 A 严格对角占优⇒ Gauss-Seidel迭代法收敛SOR迭代法
分量形式
x(k+1)i=x(k)i+ωaii⎛⎝bi−∑j=1i−1aijx(k+1)j−∑j=inaijx(k)j⎞⎠i=1,2,...,n;k=0,1,...
矩阵形式1Sω=(D−ωL)−1[(1−ω)D+ωU]收敛条件
(1) SOR收敛 ⇒ 0<ω<2 ;
(2){系数矩阵A是对称正定矩阵0<ω<2⇒SOR迭代法收敛
(3){系数矩阵A严格对角占优0<ω⩽1⇒SOR迭代法收敛
- \pounds在编辑器中使用LaTex方式打不出来,因此将\pounds用S代替了。 ↩