文章目录
2020年第46周学习小结:
本文为11月9日~11月15日的学习小结。
本周阅读了一篇有关三维表面重建的论文,文章中提出的AtlasNet用一组表面元素来表示三维的形状。原理部分涉及到许多几何学与拓扑学的知识。同时总结了一些程序调试时遇到的问题与解决方案 。
论文阅读 AtlasNet: A Papier-Mˆach´e Approach to Learning 3D Surface Generation
刚开始阅读这篇文章时一头雾水,原理部分涉及了许多几何学与拓扑学的知识,但是了解了相关术语后就很好理解文章使用的方法以及其理论支撑。
相关术语
Manifold、Chart与Atlas
- Manifold
Manifold(流形)是局部具有欧几里得空间性质的拓扑空间,一维流形包括线、圆;二维流形(2-manifold)包括平面,球面和环面。下图中的球型就是一个二维流形:
可以看到,在局部区域中,三个地点之间的连线组成的三角形拥有内角和为180°的性质。若仅关注流形的局部,那么它具有欧几里得空间性质。我们可以在平面直角坐标系中画出这一块区域,流形的其它局部同理,但不能在同一坐标系下画出完整的流形。
以上图中的地球为例,地球整体可以看做由一张张每个区域的地图贴在一个球体上形成的表面。
- Chart与Atlas
把流形的局部看作为欧几里得空间,称之为Chart(图),由每个区域的Chart组成的集合为Atlas(地图集)
打个比方,地球上每个城市的地图即为Chart,所有城市的地图组成的集合即为Atlas,将每个地区的地图连接在一起拼成一个球体就是对应的流形。
同胚
在拓扑学中,同胚(homeomorphism)是两个拓扑空间之间的双连续函数。同胚是拓扑空间范畴中的同构。
如下图,假设有一个足够柔韧的甜甜圈,通过对其拉伸变形就可以变成一个杯子的形状,这两种形状就是同胚:
同胚的定义如下:
表面参数化
参数化是指曲面与参数域之间的双射映射,若表面与参数域具有相似的拓扑,则存在这一映射,其中如果曲面是由三角形网格构成的,那么计算此类映射的问题称为网格参数化。
如下图三维空间中的曲面可以通过某种映射关系在二维中表示,同样通过逆映射也可以将二维的参数域复原至三维曲面的形式。
来源:SIGGRAPH Asia 2008
课程地址:https://www.inf.usi.ch/hormann/parameterization/index.html
举个例子说明表面参数化:我们可以将纬度作为纵坐标,用V表示,经度作为横坐标,用U表示,那么通过U、V两个参数就可以表示地球表面的任意一个坐标点(x,y,z),同样通过一个三维坐标可以确定u,v参数域中唯一的点。即二者之间存在双射:
f ( u , v ) ⟺ g ( x , y , z ) f(u,v) \iff g(x,y,z) f(u,v)⟺g(x,y,z)
值得注意的是三维空间中的满足一定关系(如球面的点满足方程 x 2 + y 2 + z 2 = R 2 x^2+y^2+z^2=R^2 x2+