类似于曲线的定义,曲面就是一个映射,它把平面上的一块区域映射到3维空间中
对于一个由参数u和v描述的曲面,
s
(
u
,
v
)
=
(
x
(
u
,
v
)
,
y
(
u
,
v
)
,
z
(
u
,
v
)
)
\boldsymbol s(u,v)=(x(u,v),y(u,v),z(u,v))
s(u,v)=(x(u,v),y(u,v),z(u,v))
切平面和法向量
对曲面上一点P,求s对u和v的偏导数,会得到
s
u
,
s
v
\boldsymbol s_u,s_v
su,sv两个切向量,这两个切向量都在切平面上,可以得到P点处,曲面的法向量
n
p
=
s
u
×
s
v
∣
s
u
×
s
v
∣
\boldsymbol n_{p}=\frac{\boldsymbol s_{u}\times \boldsymbol s_{v}}{|\boldsymbol s_{u}\times \boldsymbol s_{v}|}
np=∣su×sv∣su×sv
曲面第一基本型
我们需要牢记曲面是参数空间到三维空间的映射,那么参数空间的微元可以映射到三维曲面上的微元,借此我们研究参数空间和三维空间中长度和面积的关系
微元长度
参数空间的微元
d
r
=
(
d
u
,
d
v
)
\boldsymbol dr=(du,dv)
dr=(du,dv),对应的三维空间中的微元
d
s
=
s
(
d
u
+
d
u
,
v
+
d
v
)
−
s
(
u
,
v
)
=
d \boldsymbol s = \boldsymbol s(du+du,v+dv)- \boldsymbol s(u,v)=
ds=s(du+du,v+dv)−s(u,v)=
s
u
d
u
+
s
v
d
v
\mathbf s_{u}du+ \mathbf s_{v}dv
sudu+svdv 微元对应的长度
d
l
2
=
d
s
⋅
d
s
=
d \boldsymbol l^2=d \boldsymbol s \cdot d \boldsymbol s =
dl2=ds⋅ds=
(
s
u
d
u
+
s
v
d
v
)
⋅
(
s
u
d
u
+
s
v
d
v
)
(\mathbf s_{u}du+ \mathbf s_{v}dv) \cdot (\mathbf s_{u}du+ \mathbf s_{v}dv)
(sudu+svdv)⋅(sudu+svdv)
上式展开可得
d
l
2
=
s
u
⋅
s
u
d
u
2
+
2
s
u
⋅
s
v
d
u
d
v
+
s
v
⋅
s
v
d
v
2
d \boldsymbol l^2 = s_{u}\cdot s_{u}du^{2}+2s_{u}\cdot s_{v}dudv+s_{v}\cdot s_{v}dv^{2}
dl2=su⋅sudu2+2su⋅svdudv+sv⋅svdv2
令
E
=
S
u
⋅
S
u
F
=
S
u
⋅
S
v
G
=
S
v
⋅
S
v
E= S_{u}\cdot S_{u} \quad F =S_{u}\cdot S_{v} \quad G = S_{v}\cdot S_{v}
E=Su⋅SuF=Su⋅SvG=Sv⋅Sv
可得
d
l
2
=
E
d
u
2
+
2
F
d
u
d
v
+
G
d
v
2
d \boldsymbol l^2=Edu^2+2Fdudv+Gdv^2
dl2=Edu2+2Fdudv+Gdv2
则曲面上的曲线C(t) = C(u(t),v(t))上两点的弧长为:
s
=
∫
t
0
t
1
d
s
d
t
d
t
=
∫
t
0
t
1
E
(
d
u
d
t
)
2
+
2
F
d
u
d
t
d
v
d
t
+
G
(
d
v
d
t
)
2
d
t
s=\int_{t_0}^{t_1}\frac{\mathrm{d}s}{\mathrm{d}t} \mathrm{d}t=\int_{t_0}^{t_1}\sqrt{E\left(\frac{\mathrm{d}u}{\mathrm{d}t}\right)^2+2F\frac{\mathrm{d}u}{\mathrm{d}t}\frac{\mathrm{d}v}{\mathrm{d}t}+G\left(\frac{\mathrm{d}v}{\mathrm{d}t}\right)^2}\mathrm{d}t
s=∫t0t1dtdsdt=∫t0t1E(dtdu)2+2Fdtdudtdv+G(dtdv)2dt
我们称
I
=
E
d
u
2
+
2
F
d
u
d
v
+
G
d
v
2
\mathrm{I} =Edu^2+2Fdudv+Gdv^2
I=Edu2+2Fdudv+Gdv2为曲面第一型,E,F,G为曲面第一基本量
微元夹角
取两个不同方向的微元
d
r
=
(
d
u
,
d
v
)
,
d
r
′
=
(
d
u
′
,
d
v
′
)
d\boldsymbol r=(du,dv),d\boldsymbol r'=(du',dv')
dr=(du,dv),dr′=(du′,dv′)
其对应的三维空间微元为:
d
s
=
s
u
d
u
+
s
v
d
v
,
d
s
′
=
s
u
d
u
′
+
s
v
d
v
′
d\boldsymbol s=\boldsymbol s_udu+\boldsymbol s_vdv,d\boldsymbol s'=\boldsymbol s_udu'+\boldsymbol s_vdv'
ds=sudu+svdv,ds′=sudu′+svdv′
d
s
2
=
E
d
u
2
+
2
F
d
u
d
v
+
G
d
v
2
,
d
s
′
2
=
E
d
u
′
2
+
2
F
u
′
d
v
′
+
G
d
v
′
2
ds^{2}=Edu^{2}+2Fdudv+Gdv^{2},ds'^{2}=Edu'^{2}+2Fu'dv'+Gdv'^{2}
ds2=Edu2+2Fdudv+Gdv2,ds′2=Edu′2+2Fu′dv′+Gdv′2
两微元的向量积为:
d
s
⋅
d
s
′
=
(
s
u
d
u
+
s
v
d
v
)
⋅
(
s
u
d
u
′
+
s
v
d
v
′
)
=
E
d
u
d
u
′
+
F
(
d
u
d
v
′
+
d
v
d
u
′
)
+
G
d
v
d
v
′
d\boldsymbol s \cdot d\boldsymbol s'=(s_udu+s_vdv) \cdot (s_udu'+s_vdv') =Edudu'+F\left(dudv'+dvdu'\right)+Gdvdv'
ds⋅ds′=(sudu+svdv)⋅(sudu′+svdv′)=Edudu′+F(dudv′+dvdu′)+Gdvdv′
显然易得,微元夹角:
cos
θ
=
E
d
u
d
u
′
+
F
(
d
u
d
v
′
+
d
v
d
u
′
)
+
G
d
v
d
v
′
E
d
u
2
+
2
F
d
u
d
v
+
G
d
v
2
E
d
u
′
2
+
2
F
d
u
′
d
v
′
+
G
d
v
′
2
.
\cos\theta=\frac{Edudu'+F(dudv'+dvdu')+Gdvdv'}{\sqrt{Edu^{2}+2Fdudv+Gdv^{2}}\sqrt{Edu'^{2}+2Fdu'dv'+Gdv'^{2}}}.
cosθ=Edu2+2Fdudv+Gdv2Edu′2+2Fdu′dv′+Gdv′2Edudu′+F(dudv′+dvdu′)+Gdvdv′.
微元面积
微元du和dv围成的四边形面积 dudv,其对应的三维曲面的微元为A(u,v),A(u+du,v),A(u,v+dv),A(u+du,v+dv)组成的四边形,如下图所示,其面积可以用向量叉乘表示:
d
S
=
∣
A
u
d
u
×
A
v
d
v
∣
=
∣
A
u
×
A
v
∣
d
u
d
v
dS = |A_udu\times A_vdv|=|A_u\times A_v|dudv
dS=∣Audu×Avdv∣=∣Au×Av∣dudv
(
A
u
×
A
v
)
2
=
(
∣
A
u
∣
⋅
∣
A
v
∣
s
i
n
θ
)
2
=
∣
A
u
∣
2
∣
A
v
∣
2
−
∣
A
u
∣
2
∣
A
v
∣
2
c
o
s
θ
2
=
(
A
u
⋅
A
u
)
(
A
v
⋅
A
v
)
−
(
A
u
⋅
A
v
)
2
=
E
G
−
F
2
\begin{pmatrix}A_u\times A_v\end{pmatrix}^2 = (|A_u|\cdot |A_v| sin \theta)^2 = |A_u|^2|A_v|^2-|A_u|^2|A_v|^2 cos\theta^2 = \\ \begin{pmatrix}A_u\cdot A_u\end{pmatrix}\begin{pmatrix}A_v\cdot A_v\end{pmatrix}-\begin{pmatrix}A_u\cdot A_v\end{pmatrix}^2= EG-F^2
(Au×Av)2=(∣Au∣⋅∣Av∣sinθ)2=∣Au∣2∣Av∣2−∣Au∣2∣Av∣2cosθ2=(Au⋅Au)(Av⋅Av)−(Au⋅Av)2=EG−F2
曲面上区域D的面积为:
S
D
=
∬
D
E
G
−
F
2
d
u
d
v
S_D=\iint\limits_{D}\sqrt{EG-F^{2}} dudv
SD=D∬EG−F2dudv
曲面内蕴性质
一个曲面的第一基本型,决定了这个曲面的内蕴性质。所谓的内蕴性质,是指曲面那些内在的、本质的、属于曲面本身的性质,而与曲面嵌入到的空间无关的性质,比如长度、面积、角度等性质。由上面的推导可知,长度、面积、角度这几个性质只与第一型相关,所以它们是内蕴的
曲面第二基本型
r
˙
=
r
u
u
˙
+
r
v
v
˙
\dot{\boldsymbol{r}}=\boldsymbol{r}_u\dot{u}+\boldsymbol{r}_v\dot{\boldsymbol{v}}
r˙=ruu˙+rvv˙
r
¨
=
r
˙
u
u
˙
+
r
u
u
¨
+
r
˙
v
v
˙
+
r
v
v
¨
\ddot{\boldsymbol r}= \dot r_u \dot u + r_u \ddot u + \dot r_v \dot v + r_v \ddot v
r¨=r˙uu˙+ruu¨+r˙vv˙+rvv¨
应用链式法则:
r
˙
u
=
r
u
u
u
˙
+
r
u
v
v
˙
\dot r_u = r_{uu} \dot u + r_{uv} \dot v
r˙u=ruuu˙+ruvv˙
r
˙
v
=
r
v
u
u
˙
+
r
v
v
v
˙
\dot r_v = r_{vu} \dot u + r_{vv} \dot v
r˙v=rvuu˙+rvvv˙
r
¨
=
r
u
u
u
˙
2
+
2
r
u
v
u
˙
v
˙
+
r
v
v
v
˙
2
+
r
u
u
¨
+
r
v
v
¨
\ddot{\boldsymbol r} =r_{uu}\dot{u}^2+2r_{uv}\dot{u}\dot{v}+r_{vv}\dot{v}^2+r_u\ddot{u}+r_v\ddot{v}
r¨=ruuu˙2+2ruvu˙v˙+rvvv˙2+ruu¨+rvv¨
在曲线理论中,我们知道 ,
r
¨
\ddot{\boldsymbol r}
r¨为曲率向量,主法线向量,
考虑曲线上的一点P和邻近的一点P’, 过P点的切平面为II,P’到气平面的投影为Q,
δ
=
P
P
′
→
⋅
n
\delta=\overrightarrow{PP^{\prime}}\cdot \boldsymbol n
δ=PP′⋅n
P
P
′
→
=
s
(
u
+
d
u
,
v
+
d
v
)
−
s
(
u
,
v
)
=
s
u
d
u
+
s
v
d
v
+
1
/
2
(
s
u
u
d
u
2
+
s
v
v
d
v
2
+
2
s
u
v
d
u
d
v
)
…
…
\overrightarrow{PP^{\prime}} = s(u+du,v+dv)-s(u,v) = s_udu+s_vdv +1/2(s_{uu}du^2+s_{vv}dv^2+2s_{uv}dudv)……
PP′=s(u+du,v+dv)−s(u,v)=sudu+svdv+1/2(suudu2+svvdv2+2suvdudv)……
δ
=
1
/
2
(
s
u
u
d
u
2
+
s
v
v
d
v
2
+
2
s
u
v
d
u
d
v
)
⋅
n
\delta = 1/2(s_{uu}du^2+s_{vv}dv^2+2s_{uv}dudv) \cdot \boldsymbol n
δ=1/2(suudu2+svvdv2+2suvdudv)⋅n
我们记:
L
=
r
u
u
⋅
n
,
M
=
r
w
⋅
n
,
N
=
r
w
⋅
n
,
L=r_{uu}\cdot \boldsymbol n,M=r_{w}\cdot \boldsymbol n,N=r_{w}\cdot \boldsymbol n,
L=ruu⋅n,M=rw⋅n,N=rw⋅n,
Π
=
n
⋅
d
2
r
=
L
d
u
2
+
2
M
d
u
d
v
+
N
d
v
2
=
2
δ
\Pi=\boldsymbol{n}\cdot\mathrm{d}^2\boldsymbol{r}=L\mathrm{d}u^2+2\boldsymbol{M}\mathrm{d}u\mathrm{d}v+N\mathrm{d}v^2 = 2\delta
Π=n⋅d2r=Ldu2+2Mdudv+Ndv2=2δ
我们称
Π
\Pi
Π为曲面第二基本型,L,M,N为曲面第二基本量
第二基本型刻画了曲面离开切平面的程度,而这实际上刻画了曲面在空间中如何弯曲。
曲面上曲线的曲率
给定曲面:
s
=
s
(
u
,
v
)
\boldsymbol s= \boldsymbol s(u,v)
s=s(u,v)
过该曲面上一点P的曲线记为:
u
=
u
(
s
)
,
v
=
v
(
s
)
u=u(s),v=v(s)
u=u(s),v=v(s),或
r
=
r
(
s
)
=
(
u
(
s
)
,
v
(
s
)
)
\boldsymbol r= \boldsymbol r(s)=(u(s),v(s))
r=r(s)=(u(s),v(s))
曲线的曲率满足如下关系:
r
¨
=
α
˙
=
k
β
\ddot{\boldsymbol r} = \dot {\boldsymbol \alpha} = k \boldsymbol \beta
r¨=α˙=kβ
主法向和曲面法向夹角为
θ
\theta
θ
r
¨
⋅
n
=
k
β
⋅
n
=
k
cos
θ
\ddot{r}\cdot n =k\boldsymbol{\beta}\cdot\boldsymbol{n}=k\cos\theta
r¨⋅n=kβ⋅n=kcosθ
r
¨
=
n
⋅
d
2
r
d
s
2
=
n
⋅
d
2
r
d
s
2
=
Π
I
\ddot{r} =n\cdot\frac{\mathrm{d}^2\boldsymbol{r}}{\mathrm{d}s^2}=\frac{\boldsymbol{n}\cdot\mathrm{d}^2\boldsymbol{r}}{\mathrm{d}s^2}=\frac{\boldsymbol{\Pi}}{\mathrm I}
r¨=n⋅ds2d2r=ds2n⋅d2r=IΠ
k
cos
θ
=
Π
I
=
L
d
u
2
+
2
M
d
u
d
v
+
N
d
v
2
E
d
u
2
+
2
F
d
u
d
v
+
G
d
v
2
k\cos\theta =\frac{\boldsymbol{\Pi}}{\mathrm{I}}=\frac{L\mathrm{d}u^2+2{M}\mathrm{d}u\mathrm{d}v+N\mathrm{d}v^2}{E\mathrm{d}u^2+2{F}\mathrm{d}u\mathrm{d}v+G\mathrm{d}v^2}
kcosθ=IΠ=Edu2+2Fdudv+Gdv2Ldu2+2Mdudv+Ndv2
可知
k
c
o
s
θ
kcos \theta
kcosθ只和
d
u
:
d
v
du:dv
du:dv相关,如果两条曲线经过同一点,且在该点曲线的切向一致,则
k
c
o
s
θ
kcos \theta
kcosθ为常数
密切平面截线
上面的
α
\boldsymbol \alpha
α和
β
\boldsymbol \beta
β在密切平面上,密切平面和曲面交线为密切平面截线
法截线
过曲线切线
α
\boldsymbol \alpha
α和曲面法向
n
\boldsymbol n
n的平面为法截面,法截面与曲面的交线为法截线,法截线的主法向在法截面(截线在平面上,为平面曲线),且平行于
n
\boldsymbol n
n
由于密切平面截线和法截线在P点处具有相同的切向,故而
k
n
c
o
s
0
=
k
c
o
s
θ
k_n cos0 = kcos \theta
kncos0=kcosθ
梅尼埃(meusnier)定理
曲面上的曲线(**C)**在给定点P的曲率中心C就是与曲线(C)具有共同切线的法截线(
C
0
C_0
C0)上同一个点P的曲率中心
C
0
C_0
C0在曲线(C)的密切平面上的投影
主曲率
法曲率只依赖于点P和方向的选取,
k
n
=
Π
I
k_n=\frac{\Pi}{\mathrm{I}}
kn=IΠ
在过点P的所有方向中,法曲率存在一个最小值k1,一个最大值k2,k1和K2对应的方向为主方向,这两个主方向垂直
假设某个方向与k1对应的方向夹角为
θ
\theta
θ,则满足如下欧拉公式
k
n
=
k
1
cos
2
θ
+
k
2
sin
2
θ
k_n=k_1\cos^2\theta+k_2\sin^2\theta
kn=k1cos2θ+k2sin2θ
(
E
G
−
F
2
)
k
N
2
−
(
L
G
−
2
M
F
+
N
E
)
k
N
+
(
L
N
−
M
2
)
=
0
(EG-F^2)k_N^2-(LG-2MF+NE)k_N+(LN-M^2)=0
(EG−F2)kN2−(LG−2MF+NE)kN+(LN−M2)=0
高斯曲率:
K
=
k
1
k
2
=
L
N
−
M
2
E
G
−
F
2
K=k_1k_2=\frac{LN-M^2}{EG-F^2}
K=k1k2=EG−F2LN−M2
平均曲率:
K
=
k
1
k
2
=
L
N
−
M
2
E
G
−
F
2
K=k_1k_2=\frac{LN-M^2}{EG-F^2}
K=k1k2=EG−F2LN−M2