微分几何:曲面基本理论

类似于曲线的定义,曲面就是一个映射,它把平面上的一块区域映射到3维空间中
image.png
对于一个由参数u和v描述的曲面, s ( u , v ) = ( x ( u , v ) , y ( u , v ) , z ( u , v ) ) \boldsymbol s(u,v)=(x(u,v),y(u,v),z(u,v)) s(u,v)=(x(u,v),y(u,v),z(u,v))

切平面和法向量

对曲面上一点P,求s对u和v的偏导数,会得到 s u , s v \boldsymbol s_u,s_v su,sv两个切向量,这两个切向量都在切平面上,可以得到P点处,曲面的法向量
n p = s u × s v ∣ s u × s v ∣ \boldsymbol n_{p}=\frac{\boldsymbol s_{u}\times \boldsymbol s_{v}}{|\boldsymbol s_{u}\times \boldsymbol s_{v}|} np=su×svsu×sv

曲面第一基本型

我们需要牢记曲面是参数空间到三维空间的映射,那么参数空间的微元可以映射到三维曲面上的微元,借此我们研究参数空间和三维空间中长度和面积的关系

微元长度
参数空间的微元 d r = ( d u , d v ) \boldsymbol dr=(du,dv) dr=(du,dv),对应的三维空间中的微元 d s = s ( d u + d u , v + d v ) − s ( u , v ) = d \boldsymbol s = \boldsymbol s(du+du,v+dv)- \boldsymbol s(u,v)= ds=s(du+du,v+dv)s(u,v)= s u d u + s v d v \mathbf s_{u}du+ \mathbf s_{v}dv sudu+svdv 微元对应的长度 d l 2 = d s ⋅ d s = d \boldsymbol l^2=d \boldsymbol s \cdot d \boldsymbol s = dl2=dsds= ( s u d u + s v d v ) ⋅ ( s u d u + s v d v ) (\mathbf s_{u}du+ \mathbf s_{v}dv) \cdot (\mathbf s_{u}du+ \mathbf s_{v}dv) (sudu+svdv)(sudu+svdv)
上式展开可得
d l 2 = s u ⋅ s u d u 2 + 2 s u ⋅ s v d u d v + s v ⋅ s v d v 2 d \boldsymbol l^2 = s_{u}\cdot s_{u}du^{2}+2s_{u}\cdot s_{v}dudv+s_{v}\cdot s_{v}dv^{2} dl2=susudu2+2susvdudv+svsvdv2
E = S u ⋅ S u F = S u ⋅ S v G = S v ⋅ S v E= S_{u}\cdot S_{u} \quad F =S_{u}\cdot S_{v} \quad G = S_{v}\cdot S_{v} E=SuSuF=SuSvG=SvSv
可得 d l 2 = E d u 2 + 2 F d u d v + G d v 2 d \boldsymbol l^2=Edu^2+2Fdudv+Gdv^2 dl2=Edu2+2Fdudv+Gdv2
则曲面上的曲线C(t) = C(u(t),v(t))上两点的弧长为:
s = ∫ t 0 t 1 d s d t d t = ∫ t 0 t 1 E ( d u d t ) 2 + 2 F d u d t d v d t + G ( d v d t ) 2 d t s=\int_{t_0}^{t_1}\frac{\mathrm{d}s}{\mathrm{d}t} \mathrm{d}t=\int_{t_0}^{t_1}\sqrt{E\left(\frac{\mathrm{d}u}{\mathrm{d}t}\right)^2+2F\frac{\mathrm{d}u}{\mathrm{d}t}\frac{\mathrm{d}v}{\mathrm{d}t}+G\left(\frac{\mathrm{d}v}{\mathrm{d}t}\right)^2}\mathrm{d}t s=t0t1dtdsdt=t0t1E(dtdu)2+2Fdtdudtdv+G(dtdv)2 dt
我们称 I = E d u 2 + 2 F d u d v + G d v 2 \mathrm{I} =Edu^2+2Fdudv+Gdv^2 I=Edu2+2Fdudv+Gdv2为曲面第一型,E,F,G为曲面第一基本量

微元夹角
取两个不同方向的微元
d r = ( d u , d v ) , d r ′ = ( d u ′ , d v ′ ) d\boldsymbol r=(du,dv),d\boldsymbol r'=(du',dv') dr=(du,dv)dr=(du,dv)
其对应的三维空间微元为:
d s = s u d u + s v d v , d s ′ = s u d u ′ + s v d v ′ d\boldsymbol s=\boldsymbol s_udu+\boldsymbol s_vdv,d\boldsymbol s'=\boldsymbol s_udu'+\boldsymbol s_vdv' ds=sudu+svdv,ds=sudu+svdv
d s 2 = E d u 2 + 2 F d u d v + G d v 2 , d s ′ 2 = E d u ′ 2 + 2 F u ′ d v ′ + G d v ′ 2 ds^{2}=Edu^{2}+2Fdudv+Gdv^{2},ds'^{2}=Edu'^{2}+2Fu'dv'+Gdv'^{2} ds2=Edu2+2Fdudv+Gdv2,ds2=Edu2+2Fudv+Gdv2
两微元的向量积为:
d s ⋅ d s ′ = ( s u d u + s v d v ) ⋅ ( s u d u ′ + s v d v ′ ) = E d u d u ′ + F ( d u d v ′ + d v d u ′ ) + G d v d v ′ d\boldsymbol s \cdot d\boldsymbol s'=(s_udu+s_vdv) \cdot (s_udu'+s_vdv') =Edudu'+F\left(dudv'+dvdu'\right)+Gdvdv' dsds=(sudu+svdv)(sudu+svdv)=Edudu+F(dudv+dvdu)+Gdvdv
显然易得,微元夹角:
cos ⁡ θ = E d u d u ′ + F ( d u d v ′ + d v d u ′ ) + G d v d v ′ E d u 2 + 2 F d u d v + G d v 2 E d u ′ 2 + 2 F d u ′ d v ′ + G d v ′ 2 . \cos\theta=\frac{Edudu'+F(dudv'+dvdu')+Gdvdv'}{\sqrt{Edu^{2}+2Fdudv+Gdv^{2}}\sqrt{Edu'^{2}+2Fdu'dv'+Gdv'^{2}}}. cosθ=Edu2+2Fdudv+Gdv2 Edu2+2Fdudv+Gdv2 Edudu+F(dudv+dvdu)+Gdvdv.

微元面积
微元du和dv围成的四边形面积 dudv,其对应的三维曲面的微元为A(u,v),A(u+du,v),A(u,v+dv),A(u+du,v+dv)组成的四边形,如下图所示,其面积可以用向量叉乘表示:
image.png
d S = ∣ A u d u × A v d v ∣ = ∣ A u × A v ∣ d u d v dS = |A_udu\times A_vdv|=|A_u\times A_v|dudv dS=Audu×Avdv=Au×Avdudv
( A u × A v ) 2 = ( ∣ A u ∣ ⋅ ∣ A v ∣ s i n θ ) 2 = ∣ A u ∣ 2 ∣ A v ∣ 2 − ∣ A u ∣ 2 ∣ A v ∣ 2 c o s θ 2 = ( A u ⋅ A u ) ( A v ⋅ A v ) − ( A u ⋅ A v ) 2 = E G − F 2 \begin{pmatrix}A_u\times A_v\end{pmatrix}^2 = (|A_u|\cdot |A_v| sin \theta)^2 = |A_u|^2|A_v|^2-|A_u|^2|A_v|^2 cos\theta^2 = \\ \begin{pmatrix}A_u\cdot A_u\end{pmatrix}\begin{pmatrix}A_v\cdot A_v\end{pmatrix}-\begin{pmatrix}A_u\cdot A_v\end{pmatrix}^2= EG-F^2 (Au×Av)2=(AuAvsinθ)2=Au2Av2Au2Av2cosθ2=(AuAu)(AvAv)(AuAv)2=EGF2
曲面上区域D的面积为:
S D = ∬ D E G − F 2 d u d v S_D=\iint\limits_{D}\sqrt{EG-F^{2}} dudv SD=DEGF2 dudv

曲面内蕴性质

一个曲面的第一基本型,决定了这个曲面的内蕴性质。所谓的内蕴性质,是指曲面那些内在的、本质的、属于曲面本身的性质,而与曲面嵌入到的空间无关的性质,比如长度、面积、角度等性质。由上面的推导可知,长度、面积、角度这几个性质只与第一型相关,所以它们是内蕴的

曲面第二基本型

r ˙ = r u u ˙ + r v v ˙ \dot{\boldsymbol{r}}=\boldsymbol{r}_u\dot{u}+\boldsymbol{r}_v\dot{\boldsymbol{v}} r˙=ruu˙+rvv˙
r ¨ = r ˙ u u ˙ + r u u ¨ + r ˙ v v ˙ + r v v ¨ \ddot{\boldsymbol r}= \dot r_u \dot u + r_u \ddot u + \dot r_v \dot v + r_v \ddot v r¨=r˙uu˙+ruu¨+r˙vv˙+rvv¨
应用链式法则: r ˙ u = r u u u ˙ + r u v v ˙ \dot r_u = r_{uu} \dot u + r_{uv} \dot v r˙u=ruuu˙+ruvv˙ r ˙ v = r v u u ˙ + r v v v ˙ \dot r_v = r_{vu} \dot u + r_{vv} \dot v r˙v=rvuu˙+rvvv˙
r ¨ = r u u u ˙ 2 + 2 r u v u ˙ v ˙ + r v v v ˙ 2 + r u u ¨ + r v v ¨ \ddot{\boldsymbol r} =r_{uu}\dot{u}^2+2r_{uv}\dot{u}\dot{v}+r_{vv}\dot{v}^2+r_u\ddot{u}+r_v\ddot{v} r¨=ruuu˙2+2ruvu˙v˙+rvvv˙2+ruu¨+rvv¨
在曲线理论中,我们知道 , r ¨ \ddot{\boldsymbol r} r¨为曲率向量,主法线向量,
image.png
考虑曲线上的一点P和邻近的一点P’, 过P点的切平面为II,P’到气平面的投影为Q,
δ = P P ′ → ⋅ n \delta=\overrightarrow{PP^{\prime}}\cdot \boldsymbol n δ=PP n
P P ′ → = s ( u + d u , v + d v ) − s ( u , v ) = s u d u + s v d v + 1 / 2 ( s u u d u 2 + s v v d v 2 + 2 s u v d u d v ) … … \overrightarrow{PP^{\prime}} = s(u+du,v+dv)-s(u,v) = s_udu+s_vdv +1/2(s_{uu}du^2+s_{vv}dv^2+2s_{uv}dudv)…… PP =s(u+du,v+dv)s(u,v)=sudu+svdv+1/2(suudu2+svvdv2+2suvdudv)……
δ = 1 / 2 ( s u u d u 2 + s v v d v 2 + 2 s u v d u d v ) ⋅ n \delta = 1/2(s_{uu}du^2+s_{vv}dv^2+2s_{uv}dudv) \cdot \boldsymbol n δ=1/2(suudu2+svvdv2+2suvdudv)n
我们记:
L = r u u ⋅ n , M = r w ⋅ n , N = r w ⋅ n , L=r_{uu}\cdot \boldsymbol n,M=r_{w}\cdot \boldsymbol n,N=r_{w}\cdot \boldsymbol n, L=ruun,M=rwn,N=rwn,
Π = n ⋅ d 2 r = L d u 2 + 2 M d u d v + N d v 2 = 2 δ \Pi=\boldsymbol{n}\cdot\mathrm{d}^2\boldsymbol{r}=L\mathrm{d}u^2+2\boldsymbol{M}\mathrm{d}u\mathrm{d}v+N\mathrm{d}v^2 = 2\delta Π=nd2r=Ldu2+2Mdudv+Ndv2=2δ
我们称 Π \Pi Π为曲面第二基本型,L,M,N为曲面第二基本量
第二基本型刻画了曲面离开切平面的程度,而这实际上刻画了曲面在空间中如何弯曲。

曲面上曲线的曲率

给定曲面:
s = s ( u , v ) \boldsymbol s= \boldsymbol s(u,v) s=s(u,v)
过该曲面上一点P的曲线记为:
u = u ( s ) , v = v ( s ) u=u(s),v=v(s) u=u(s),v=v(s),或 r = r ( s ) = ( u ( s ) , v ( s ) ) \boldsymbol r= \boldsymbol r(s)=(u(s),v(s)) r=r(s)=(u(s),v(s))
曲线的曲率满足如下关系:
r ¨ = α ˙ = k β \ddot{\boldsymbol r} = \dot {\boldsymbol \alpha} = k \boldsymbol \beta r¨=α˙=kβ
主法向和曲面法向夹角为 θ \theta θ
image.png
r ¨ ⋅ n = k β ⋅ n = k cos ⁡ θ \ddot{r}\cdot n =k\boldsymbol{\beta}\cdot\boldsymbol{n}=k\cos\theta r¨n=kβn=kcosθ
r ¨ = n ⋅ d 2 r d s 2 = n ⋅ d 2 r d s 2 = Π I \ddot{r} =n\cdot\frac{\mathrm{d}^2\boldsymbol{r}}{\mathrm{d}s^2}=\frac{\boldsymbol{n}\cdot\mathrm{d}^2\boldsymbol{r}}{\mathrm{d}s^2}=\frac{\boldsymbol{\Pi}}{\mathrm I} r¨=nds2d2r=ds2nd2r=IΠ
k cos ⁡ θ = Π I = L d u 2 + 2 M d u d v + N d v 2 E d u 2 + 2 F d u d v + G d v 2 k\cos\theta =\frac{\boldsymbol{\Pi}}{\mathrm{I}}=\frac{L\mathrm{d}u^2+2{M}\mathrm{d}u\mathrm{d}v+N\mathrm{d}v^2}{E\mathrm{d}u^2+2{F}\mathrm{d}u\mathrm{d}v+G\mathrm{d}v^2} kcosθ=IΠ=Edu2+2Fdudv+Gdv2Ldu2+2Mdudv+Ndv2
可知 k c o s θ kcos \theta kcosθ只和 d u : d v du:dv du:dv相关,如果两条曲线经过同一点,且在该点曲线的切向一致,则 k c o s θ kcos \theta kcosθ为常数
密切平面截线
上面的 α \boldsymbol \alpha α β \boldsymbol \beta β在密切平面上,密切平面和曲面交线为密切平面截线
法截线
过曲线切线 α \boldsymbol \alpha α和曲面法向 n \boldsymbol n n的平面为法截面,法截面与曲面的交线为法截线,法截线的主法向在法截面(截线在平面上,为平面曲线),且平行于 n \boldsymbol n n
由于密切平面截线和法截线在P点处具有相同的切向,故而 k n c o s 0 = k c o s θ k_n cos0 = kcos \theta kncos0=kcosθ

梅尼埃(meusnier)定理

曲面上的曲线(**C)**在给定点P的曲率中心C就是与曲线(C)具有共同切线的法截线( C 0 C_0 C0)上同一个点P的曲率中心 C 0 C_0 C0在曲线(C)的密切平面上的投影
image.png

主曲率

法曲率只依赖于点P和方向的选取, k n = Π I k_n=\frac{\Pi}{\mathrm{I}} kn=IΠ
在过点P的所有方向中,法曲率存在一个最小值k1,一个最大值k2,k1和K2对应的方向为主方向,这两个主方向垂直
假设某个方向与k1对应的方向夹角为 θ \theta θ,则满足如下欧拉公式
k n = k 1 cos ⁡ 2 θ + k 2 sin ⁡ 2 θ k_n=k_1\cos^2\theta+k_2\sin^2\theta kn=k1cos2θ+k2sin2θ
( E G − F 2 ) k N 2 − ( L G − 2 M F + N E ) k N + ( L N − M 2 ) = 0 (EG-F^2)k_N^2-(LG-2MF+NE)k_N+(LN-M^2)=0 (EGF2)kN2(LG2MF+NE)kN+(LNM2)=0
高斯曲率:
K = k 1 k 2 = L N − M 2 E G − F 2 K=k_1k_2=\frac{LN-M^2}{EG-F^2} K=k1k2=EGF2LNM2
平均曲率:
K = k 1 k 2 = L N − M 2 E G − F 2 K=k_1k_2=\frac{LN-M^2}{EG-F^2} K=k1k2=EGF2LNM2

  • 18
    点赞
  • 19
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
曲线和曲面微分几何是研究曲线和曲面上的切向量、法向量、曲率等几何性质的数学分支。其相关内容主要包括曲线的切向量、弧长、曲率、曲率半径等以及曲面的切向量、法向量、法曲率、主曲率等。 对于曲线来说,微分几何主要关注的是曲线上每一点的切向量。切向量的方向与曲线的切线方向相同,表示曲线运动方向,而切向量的大小代表了曲线的速率。曲线的弧长是曲线上两点之间的距离,微分几何研究了如何计算曲线的弧长以及如何利用弧长参数化曲线。曲率则刻画了曲线弯曲的程度,曲线上一点的曲率越大,曲线在该点的弯曲越剧烈。曲率半径是曲线在一点处的曲率的倒数,代表曲线在该点处与局部的圆弧最相似的曲率。 对于曲面来说,微分几何主要关注的是曲面上每一点的切向量和法向量。曲面上的切向量与曲线类似,代表了曲面上的运动方向。法向量垂直于切平面,表示曲面在该点的法线方向。法曲率是曲面在一点处平行于法线方向的曲率,与曲面在该点处的弯曲程度相关。主曲率则是曲面在一点处两个方向上的曲率,分别与两个主曲率方向对应。通过计算主曲率和主曲率方向,可以得到曲面的高斯曲率和平均曲率,刻画了曲面的几何性质。 曲线和曲面微分几何在物理学、工程学和计算机图形学等领域有广泛的应用,例如在描述物体的形状、计算流体的流线、计算机图形学中的三维建模等方面都有重要的作用。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值