【论文】When Recommender Systems Meet Fleet Management: Practical Study in Online Driver Repositioning

本文探讨了滴滴司机调度系统的优化方案,旨在解决供需错配问题,通过个性化推荐接单点来提高司机收入和平台效率。文章详细介绍了调度任务的定义、建模方法、任务打分机制及其实验评估。

滴滴司机调度

《When Recommender Systems Meet Fleet Management: Practical Study in Online Driver Repositioning System》

背景

解决供需错配,为空闲司机个性化推荐接单点。
目标:优化司机体验,同时提高平台效率
挑战:

  1. 司机体验满意度:失败的调度会增加司机对平台的质疑,降低信任度。 -> 要确保能接到单
  2. 获取丰富的实时供需信息,以上帝视角协调多司机协作

总结

  1. 定义司机调度问题,提供工业界解法
  2. 设计“调度任务”
  3. 建模,解最优化问题
  4. 收益:司机收入+2%

调度任务

  1. 向空闲司机提供一个建议的指定地点with更高可能性接到单,并同时提供导航和eta
  2. 定义是否调度成功:
    去了相反方向 -> 0
    向目的地走,并在途中接到单 -> 1
    向目的地走,到达后xmin内接到单 -> 1
    向目的地走,到达后xmin内未接到单 -> 0
  3. 失败补偿,建立司机和平台的信任

建模

召回 rep=<d,g,f,r>

  1. 司机召回(D*):等待时长>x
  2. 目的地召回(G*):distance < a && eta< b。 临近位置(如.附近三圈13层格子)/ 路网结构容易到达的 (如. 有高速)/ 全城热点
  3. 失败率控制(F):使用调度失败概率模型进行过滤,模型刻画司机在当前供需场景下对调度路线
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值