[论文综述] 社区发现_1

社区发现算法综述

在这里插入图片描述

Introduction

社区发现是复杂网络问题的一个重要研究领域;

background

notation

· 复杂网络的表达式: G(V,E) , V 是node的集合,E是edges的集合;
· A i j = 1 A_{ij}=1 Aij=1表示node i 和node j之间有link; otherwise 0;
· weight w
· K i K_i Ki表示node i 的degree, 也就是和i有连接的所有边的和; K i = ∑ j = 1 N A i j K_i = \sum_{j=1}^N A_{ij} Ki=j=1NAij;
· 有向图中, k i = k i i n + k i o u t k_i = k^{in}_i + k^{out}_i ki=kiin+kiout; 无向图中, k i = k i i n = k i o u t k_i = k^{in}_i = k^{out}_i ki=kiin=kiout

社区检测

社区检测算法的一个关键作用在于可用于从网络中提取有用的信息。 社区检测面临的最大挑战是社区结构没有普遍定义。人们提出了大量的技术来在相当快的时间内找到最优的社区, 这些技术大多是基于目标函数的优化。 到目前为止,模块度优化是其中最广泛使用的技术之一。 然而,模块度优化 是一个NP-hard的问题。

modularity Q

模块度表达的是社区外的连接相较于社区内部的连接的紧密度;最原始的定义:
在这里插入图片描述
综述中列举了六种模块度计算公式的变种。分别应用与 不同的网络类型(有向无向,有权重无权重,重叠不重叠等):
在这里插入图片描述
在这里插入图片描述

社区发现算法分类

(待补充)

  1. 传统社区发现技术
    1)图分割
    2)Hierarchical clustering 分层聚类
    3)Partitional clustering 划分聚类
    4)Spectral clustering 谱聚类
    5)Divisive algorithms 分裂算法
  2. 基于模块度的社区发现技术
    1)贪心算法
    2)Simulated Annealing
    3)极值优化
    4)Spectral Optimisation 谱优化
    5)Evolutionary algorithms 进化算法
  3. Overlapping community重叠社区检测技术
  4. 动态社区检测技术
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值