在深度学习大模型中,激活函数扮演着至关重要的角色,它们引入了非线性,使得模型能够学习和模拟复杂的函数映射。以下是一些在大型神经网络模型中常用的激活函数,以及它们的特点和适用场景:
一、ReLU(Rectified Linear Unit,线性整流单元)
- 公式:
- 优点:计算简单,训练速度快,减少激活函数带来的计算负担。
- 缺点:存在死亡ReLU问题,即在训练过程中某些神经元可能永远不会激活。
二、Leaky ReLU
- 公式:
- 优点:解决了死亡ReLU问题,即使输入为负,也能有微小的梯度。
- 缺点:α 的选择可能对模型性能有较大影响。
三、Parametric ReLU (PReLU)
- 公式:
- 优点:通过学习α,模型可以自适应地调整激活函数的行为。
- 缺点:增加了模型参数的数量。
四、Sigmoid
- 公式:
- 优点:输出范围在0到1之间,适用于二分类问题的概率输出。
- 缺点:在输入值非常大或非常小的时候,梯度接近于0,导致梯度消失问题。
五、Tanh(双曲正切)
- 公式:
- 优点:输出范围在-1到1之间,中心化输出有助于数据的处理。
- 缺点:同样存在梯度消失问题。
六、Softmax
- 公式:
- 优点:常用于多分类问题的输出层,能够将输入转换为概率分布。
- 缺点:当输入差异较大时,某些维度的梯度会非常小。
七、ELU(Exponential Linear Unit,指数线性单元)
- 公式:
- 优点:对于负值也有激活,有助于缓解神经元死亡问题,并且加速收敛。
- 缺点:计算稍微复杂一些。
八、GELU(Gaussian Error Linear Unit,高斯误差线性单元)
- 公式:
- 优点:考虑到输入数据的分布特性,能够自适应地调整激活。
- 缺点:计算相对复杂,需要评估高斯分布的累积分布函数。
九、Swish或SiLU(Sigmoid Linear Unit)
- 公式:
- 优点:参数量少,计算简单,能够自适应地调整激活。
- 缺点:由于是近期提出的激活函数,可能需要更多的研究来验证其在不同任务中的性能。
文末
有需要全套的AI大模型面试题及答案解析资料的小伙伴,可以微信扫描下方CSDN官方认证二维码,免费领取【
保证100%免费
】
更多资料分享
学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。
这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频,免费分享!
一、大模型全套的学习路线
L1级别:AI大模型时代的华丽登场
L2级别:AI大模型API应用开发工程
L3级别:大模型应用架构进阶实践
L4级别:大模型微调与私有化部署
达到L4级别也就意味着你具备了在大多数技术岗位上胜任的能力,想要达到顶尖水平,可能还需要更多的专业技能和实战经验。
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
三、大模型经典PDF书籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
四、AI大模型商业化落地方案
有需要全套的AI大模型学习资源的小伙伴,可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费
】