AI 驱动的系统工程实践:大型语言模型(LLMs)架构与应用

假如你在一座城市中旅行,怎样才能让你的旅行体验更愉快、更积极?如果你先在地图上探索这座城市,或者阅读一些城市指南,了解必去的景点。使用大型语言模型(LLM)和基于 LLM 的会话工具也是如此。了解 LLM 的架构就好比在游览一座城市之前先了解这座城市的布局。正如了解一个城市的街道和地标能让你更有效地浏览城市一样,了解 LLM 的架构能让你更成功地驾驭会话。

在本文中,我们将探索 LLM 的架构,并深入了解它们的功能和局限性。你还将了解为什么需要验证 LLM 的结果以及验证的方法。

一、LLM 架构

LLM 最初基于最适合处理顺序数据的架构(sequential processing),能够在冗长的序列中保留或删除信息。然而,这种趋势最近已转向主要在 transformer 架构上构建 LLM。这一变化与两个重大优势有关。首先,transformer 非常适合管理文本内部的长期依赖关系。它允许对语言进行更具上下文意识的解释。其次,transformer 可以并行而非顺序地处理数据(parallel processing)。并行数据处理可以加快训练速度,提高模型性能,并在数据量增加时实现更好的可扩展性。大多数现代 LLM 都使用 transformer 架构,这凸显了其有效性以及在自然语言处理方面取得的重大进展。

二、Transformer LLM 架构

Transformer 是一种模型架构,它能一次性处理所有文本,而不是一个字一个字地处理,并能很好地理解这些字之间的关系。

LLM 体系结构的层数和大小因模型而异。通常情况下,它由以下几层组成:

  1. Input:你提供的输入,也称为提示。

  2. Embedding

    LLM 是数学函数,其输入和输出都是数字列表。因此,必须将单词转换为数字。

    首先,LLM 会将输入文本分解为 tokens(一种语言的基本意义单位)。Tokens 可以是单词、短语甚至标点符号。然后,通过神经网络,将所有 tokens 映射到数字表示中,这一过程被称为 Embedding。Transformer 模型将使用这些表示法进行进一步处理。

  3. Positional Encoding

    该模型使用多层神经网络处理来自文本的数字输入。位置编码是这一处理过程的重要组成部分,这一功能有助于跟踪句子中的标记顺序。

    在将标记转换为数字格式后,位置编码会为每个标记分配一个额外的值,表明其在句子中的位置。这一点非常重要,因为在 “猫追狗 ”和 “狗追猫 ”这两个句子中,单词的互换会完全改变句子的意思。因此,通过添加位置值,模型可以正确解释每个单词和单词序列的顺序和含义。

  4. Self-Attention Mechanism

    当 tokens 在模型的各层次中前进时,自我注意力机制会将它们连接起来。自我注意力机制有助于模型识别输入文本中所有单词的上下文和相互依存关系。

    重要的是,它在创建输出中的每个 token 时都会考虑整个输入序列。这种理解对于模型评估每个词的语义重要性以及在输出生成过程中做出准确预测至关重要。

  5. Decoder

    解码器与编码器类似,由多层神经网络构成。这些层也包含位置编码和自我注意力机制。解码器的目的是根据编码输入生成一组可能的后续词(tokens)。

    解码器(以及整个 LLM)的输出是词汇的概率分布。换句话说,解码器为每个生成的 token 分配其词汇表中所有可能词的概率。

  6. Output

    输入提示处理完毕后,模型就会一次生成一个标记的响应。

    通常情况下,概率最高的单词会被选为回复中的下一个 token。不过,也可以采用另一种方法,即从预测概率分布中抽取下一个 token。这就为模型的输出增加了一些可变性和创造性。

这个预测过程会一直持续到一个结束 token 或生成的响应达到最大长度为止。然后,生成的 tokens 会被去标记化,通过 NLP 转换为人类可读的文本形式,形成模型对输入提示的响应。

并非所有 LLM 都在其架构中包含编码器。例如,像 GPT-2 和 GPT-3 这样没有编码器部分的模型,在生成 future tokens 时,不会解释输入的全部上下文或完整语义。简单地说,它们更多地将输入视为一个按顺序排列的单词集合,而不是一个有关联的整体。这种操作方式有时会使这些模型难以完全理解周围的细节并生成合理的反应。

三、幻觉(Hallucinations)

一定要记住,人工智能可能会用看似真实、实则虚构的感知来欺骗用户。虽然人工智能对话工具通常是正确的,可以生成语法正确、语义丰富的文本,但它们的预测并不总是准确的。

幻觉:指生成的内容在语义或句法上看似合理,但与事实不符或与所提供的上下文无关。

产生幻觉的原因有很多,包括:

  • 文本表示之间的编码和解码出现错误。文本表示是指将文字或语言信息转换成计算机可以处理和理解的形式。这是自然语言处理(NLP)和机器学习中的一个重要概念。

  • 训练数据集包含错误或无意义的信息。

  • 用户输入的语境不足,无法做出正确或有意义的反应。

  • LLM 只是在胡编乱造。

GPT-3.5(ChatGPT 公共版本的 LLM)的训练数据仅截至特定时间(2021 年 9 月)。因此,它可能不了解该日期之后引入的更新技术或框架。工程师在利用 ChatGPT 学习前沿技术时应牢记这一点。

以下数据可能不是最新的,请以实际为准

主要有这几种幻觉:

  1. 与事实不符(Factual Inaccuracies)

    这种类型的幻觉包括生成包含事实错误的文本,或者由于缺乏明确的现实世界知识而不是基于现实的文本。

    在本例中,GPT 提供了与事实不符的信息。阿姆斯特朗是第一个登上月球而不是火星的人。为什么会这样?

    GPT 本身并不了解世界上的事实。它根据自己在训练中学到的模式生成文本。它无法实时验证数据或获取最新信息,也不具备关于事实事件的明确知识。因此,它有时会产生与事实不符的输出结果。

  2. 编造或歪曲(Fabrication or Misrepresentation)

    这类幻觉包括人为制造信息来源、提出毫无根据的主张或设计完全虚构的场景。在这种情况下,并不存在这样的链接、介绍或文章,但名称和链接看起来却像真的一样。为什么会出现这种情况?

    GPT 学会了根据训练数据中的模式生成文本。在这些数据中,有多个在引用文章、资料来源或其他信息时共享 URL 的例子。因此,GPT 可以识别这些模式,并学会在类似的上下文中生成虚假 URL。不过,这些生成的 URL 并非基于真实数据,而是基于学习到的模式。

  3. 无意义的输出(Nonsensical Output)

    对话式人工智能工具有时会给出完全随机、无关或无意义的真实语境答案。

    在这种输出中,尽管输入是清晰而直接的(狗会飞吗),但根据常识,模型生成的输出并不是真实的,在现实世界中完全是无稽之谈。为什么会出现这种情况?

    出现无意义输出的主要原因是 GPT 等人工智能语言模型的性质。它们无法像人类那样真正理解语言。此外,它也无法获取真实世界的感官体验或常识性知识来验证其反应是否符合实际情况。

    该模型根据它在所训练的数据中识别出的模式生成文本。如果特定模式与无意义的数据相匹配,模型可能会产生无意义的输出。由于该模型偶尔会在不确定合适的回复时 “即兴发挥”,导致可能生成不可能或不合逻辑的内容,从而使这一问题变得更加复杂。

    此外,由于 GPT-3 是在大量互联网文本中训练出来的,因此它从训练源中吸收了各种上下文错误、不一致和相互冲突的信息。

  4. 有偏差的输出(Biased Output)

    由于其训练的性质,GPT 有时会复制或放大其建模所依据的训练数据中存在的偏差。模型假定护士是女性。这是一种有偏见的输出,因为它延续了 “护士是女性职业 ”的刻板印象,而这是不准确的。男性和女性都可以从事护士工作。为什么会出现这种情况?

    出现这种情况是因为像 GPT-3 这样的机器学习模型是从其训练数据中学习的。如果训练数据包含偏差–大规模的互联网文本数据通常就是这种情况–模型就会学习并传播这些偏差。在这种情况下,文本数据中对女护士的刻板印象相对常见,因此 GPT-3 可能学会了将护士与女性代词联系起来。

四、验证结果(Validating Results)

ChatGPT 的训练数据只提供到特定时间的数据。因此,它可能不了解 2021 年 9 月之后推出的更新技术或框架。工程师在利用 ChatGPT 学习前沿技术时应牢记这一点。

考虑到所有可能出现的幻觉和受日期限制的培训数据,验证 LLM 提供的内容以确保其质量和实用性至关重要。以下是一些可用于验证 LLM 输出的最佳实践:

  1. 交叉检查(Cross-Check)

    将 LLM 的回答与其他可靠来源的信息进行比较,有助于更全面、更准确地理解某个主题。在与其他来源进行交叉检查时,必须评估这些来源的可信度。例如,你可以咨询该领域的专家,以确保 LLM 的回答准确无误,并适用于现实世界。

  2. 适当性(Appropriateness)

    应将 LLM 用于非常适合其能力的任务。例如,LLM 擅长生成文本、翻译语言和回答问题。但是,在需要常识或现实世界知识的任务中,LLM 就显得力不从心了。

  3. 批判性思维(Critical Thinking)

    仔细分析所提供的信息,考虑其他观点,并提出问题以澄清任何困惑或不确定性,有助于确保法律硕士的回答合乎逻辑、前后一致并适用于特定情况。

总结

了解 LLM 的架构和功能对于有效地驾驭和利用这些强大的工具非常必要。在文本生成、语言翻译和问题解答等任务中使用人工智能工具,可以提高系统的整体质量。

不过,验证 LLM 内容并确保其准确性、相关性和实用性至关重要。在处理敏感信息时,你还应谨慎行事,避免使用 LLM 发送个人信息、凭证或机密信息。通过遵循最佳实践并了解 LLM 的局限性,你可以利用人工智能工具的强大功能创建更高效、可靠和安全的软件解决方案。


如何学习大模型?

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享!

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

5. 大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值