2.6K Star,终于有人把Transformer可视化了!

2.6K Star!通过文本生成任务来可视化Transformer的运行流程,允许使用自己自定义的文本输入,帮助你更加深入的理解Transformer的工作原理!快Mark一下吧!支持本地运行!探索现在生成式AI技术。


一、Transformer介绍

1、什么是Transformer

Transformer 是一种基于自注意力(self-attention)机制的深度学习模型,最初由 Vaswani 等人在 2017 年的论文《Attention is All You Need》中提出。该模型在自然语言处理(NLP)领域取得了巨大的成功,并逐渐被应用于计算机视觉、语音识别等其他领域。Transformer 的核心思想是通过自注意力机制来捕捉输入序列中不同位置之间的依赖关系,从而避免了传统序列模型(如循环神经网络 RNN 或长短时记忆网络 LSTM)中的顺序处理限制,提高了处理速度和效果。

在这里插入图片描述

2、Transformer的组成部分

Transformer 模型主要由两部分组成:编码器(Encoder)和解码器(Decoder)。

编码器(Encoder)
  • • 输入嵌入(Input Embedding):将输入序列(如单词序列)转换为高维空间中的向量表示。

  • • 位置编码(Positional Encoding):由于 Transformer 模型本身不包含循环或卷积结构,无法捕捉序列中的位置信息,因此需要额外的位置编码来补充这一信息。

  • • 自注意力层(Self-Attention Layer):这是 Transformer 的核心部分,通过计算序列中每个元素与其他所有元素之间的注意力权重,来捕捉序列内部的依赖关系。

  • • 前馈神经网络(Feed Forward Neural Network):每个自注意力层之后通常跟随一个前馈神经网络,用于进一步处理自注意力层的输出。

  • • 层归一化(Layer Normalization)和残差连接(Residual Connection):用于稳定训练过程,防止梯度消失或爆炸。

解码器(Decoder)

解码器的结构与编码器类似,但包含额外的自注意力层和编码器-解码器注意力层(Encoder-Decoder Attention Layer)。

  • • 自注意力层:与编码器中的自注意力层类似,但在这里是遮蔽的(Masked),以防止模型在生成当前位置的输出时看到未来的信息。

  • • 编码器-解码器注意力层:允许解码器关注到编码器的输出,从而利用编码器的信息来生成输出序列。

3、Transformer的优点

  • • 并行处理:由于自注意力机制不依赖于序列中的先前元素,Transformer 可以并行处理整个序列,显著提高了处理速度。

  • • 长距离依赖:自注意力机制使得 Transformer 能够有效地捕捉序列中的长距离依赖关系。

  • • 灵活性:Transformer 模型可以灵活地应用于各种任务,如文本分类、序列标注、机器翻译等。

4、Transformer的应用

Transformer 模型及其变体(如 BERT、GPT 等)在自然语言处理领域取得了巨大的成功,推动了该领域的快速发展。此外,Transformer 也被应用于计算机视觉、语音识别、强化学习等其他领域,展现了其强大的通用性和可扩展性。

二、Transformer可视化项目介绍

Transformer Explainer通过桑基图展示Transformer内部工作原理,集成模型概述,支持多层级可视化,实现实时GPT推理。用户可试验文本,理解模型如何预测token,无需高门槛即可探索现代生成式AI技术。

在这里插入图片描述

1、在本地运行

要环境求
  • • Node.js v20 or higher

  • • NPM v10 or higher

安装步骤
git clone https://github.com/poloclub/transformer-explainer.git
cd transformer-explainer
npm install
npm run dev

2、浏览器访问

在浏览器输入:http://localhost:5173,即可访问

3、项目地址

https://github.com/poloclub/transformer-explainer


三、最后分享

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 2024行业报告

行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。

在这里插入图片描述

5. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

6. 大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值