终于有人把Transformer给可视化清楚了!!

Transformer 是一种神经网络架构,它从根本上改变了人工智能的方法。Transformer 于 2017 年在开创性论文“Attention is All You Need”中首次引入,此后成为深度学习模型的首选架构,为 OpenAI 的 **GPT、**Meta 的 Llama 和 Google 的 Gemini 等文本生成模型提供支持。除了文本,Transformer 还应用于音频生成、图像识别、蛋白质结构预测,甚至玩游戏,展示了它在众多领域的多功能性。

对于初学者而言,它的确有一定的难度。但是佐治亚理工学院和 IBM 研究院的几位研究人员联合开发了一款名为Transformer Explainer的开源工具。这款基于网页的交互式可视化工具非常适合非专业人士使用,它能有效地帮助用户理解 Transformer 模型的复杂结构以及背后的数学运算。

可视化网址:网站:https://poloclub.github.io/transformer-explainer/

unsetunsetTransformer 架构unsetunset

每个文本生成 Transformer 都由以下三个关键组件组成:

  • Embedding: 文本输入被划分为更小的单元,称为标记,可以是单词或子词。这些标记被转换为称为嵌入向量的数字向量,用于捕获单词的语义。

  • Transformer Block:处理和转换输入数据的模型。每个区块包括:

  • Attention MechanismTransformer 块的核心组件。它允许标记与其他标记通信,捕获上下文信息和单词之间的关系。

  • MLP (Multilayer Perceptron) Layer:一个独立对每个令牌进行操作的前馈网络。虽然注意力层的目标是在 Token 之间路由信息,但 MLP 的目标是优化每个 Token 的表示。

  • Output Probabilities:最终的线性层和 softmax 层将处理的嵌入转换为概率,使模型能够预测序列中的下一个标记。

unsetunsetEmbeddingunsetunset

假设您想使用 Transformer 模型生成文本。您添加如下所示的提示:“Data visualization empowers users to” .此输入需要转换为模型可以理解和处理的格式。这就是 embedding 的用武之地:它将文本转换为模型可以使用的数字表示形式。要将提示转换为嵌入,我们需要

  • 1) 对输入进行分词;

  • 2) 获取分词嵌入;

  • 3) 添加位置信息;

  • 4) 最后将分词和位置编码相加以获得最终的嵌入。

1)分词化

分词是将输入文本分解为更小、更易于管理的片段(称为分词)的过程。这些标记可以是单词或子词。“Data”“visualization” 这两个词对应于唯一的标记,而 “empowers” 这个词则分为两个标记。令牌的完整词汇表是在训练模型之前决定的:GPT-2 的词汇表有 50,257 个唯一的令牌。现在,我们已经将输入文本拆分为具有不同 ID 的标记,我们可以从嵌入中获取它们的向量表示。

2)分词嵌入

GPT-2 Small 将词汇表中的每个标记表示为 768 维向量;向量的维度取决于模型。这些嵌入向量存储在形状为 (50,257, 768) 的矩阵中,包含大约 3900 万个参数!这个广泛的矩阵允许模型为每个标记分配语义含义。

3)位置编码

Embedding 层还对有关输入提示中每个标记位置的信息进行编码。不同的模型使用不同的方法进行位置编码。GPT-2 从头开始训练自己的位置编码矩阵,将其直接集成到训练过程中。

4)最终嵌入

最后,我们将 token 和 positional encoding 相加,得到最终的 embedding 表示。这种组合表示形式捕获了标记的语义含义及其在 Importing 序列中的位置。

unsetunsetTransformer Blockunsetunset

Transformer 的处理核心在于 Transformer 模块,它由多头自注意力和多层感知器层组成。大多数模型由多个这样的块组成,这些块一个接一个地按顺序堆叠。代币表示形式通过层不断演变,从第一个区块到第 12 个区块,使模型能够建立对每个代币的复杂理解。这种分层方法导致 input 的更高阶表示。

Multi-Head Self-Attention

自我注意机制使模型能够专注于输入序列的相关部分,从而能够捕获数据中的复杂关系和依赖关系。让我们看看这种自我关注是如何逐步计算的。

1)查询、键和值矩阵

每个标记的嵌入向量都转换为三个向量:查询 (Q)、键 (K) 和值 (V)。这些向量是通过将输入嵌入矩阵与学习的 Q、K 和 V 的权重矩阵相乘而得出的。下面是一个 Web 搜索类比,可以帮助我们在这些矩阵背后建立一些直觉:

  • 查询 (Q) 是您在搜索引擎栏中键入的搜索文本。这是您要_“查找更多信息”_的令牌。

  • 键 (K) 是搜索结果窗口中每个网页的标题。它表示查询可以处理的可能令牌。

  • 值 (V) 是显示的网页的实际内容。将适当的搜索词 (Query) 与相关结果 (Key) 匹配后,我们希望获取最相关页面的内容 (Value)。

2)Masked Self-Attention

Masked self-attention允许模型通过关注输入的相关部分来生成序列,同时阻止访问未来的标记。

  • 注意力得分:Query 和 Key 矩阵的点积确定每个查询与每个键的对齐方式,从而生成一个反映所有输入标记之间关系的方阵。

  • Masking:将掩码应用于注意力矩阵的上三角形,以防止模型访问未来的标记,并将这些值设置为负无穷大。该模型需要学习如何在不“窥视”未来的情况下预测下一个代币。

  • Softmax:掩码后,注意力分数由 softmax 运算转换为概率,该运算采用每个注意力分数的指数。矩阵的每一行总和为 1,并指示其左侧的所有其他标记的相关性。

3)输出

该模型使用掩蔽的自我注意分数,并将其与 Value 矩阵相乘,以获得自我注意机制的最终输出。GPT-2 有 12 个自我注意头,每个头捕获代币之间的不同关系。这些头的输出是串联的,并通过线性投影传递。

Multi-Layer Perceptron

在多个自我注意力头捕获到输入标记之间的不同关系后,连接的输出通过多层感知器 (MLP) 层以增强模型的表示能力。MLP 模块由两个线性变换组成,中间有一个 GELU 激活函数。第一个线性变换将输入的维数从 768 增加到 3072 四倍。第二次线性变换将维数减小回原始大小 768,确保后续层接收到一致维度的输入。与自我注意机制不同,MLP 独立处理令牌,并简单地将它们从一个表示映射到另一个表示。

unsetunsetOutput Probabilitiesunsetunset

在通过所有 Transformer 模块处理完输入后,输出将通过最终的线性层,为代币预测做好准备。该层将最终表示投影到 50,257 维空间中,其中词汇表中的每个标记都有一个对应的值,称为 logit。任何词元都可以是下一个词,因此这个过程允许我们简单地根据它们成为下一个词的可能性对这些词元进行排序。然后,我们应用 softmax 函数将 logits 转换为总和 1 的概率分布。这将允许我们根据其可能性对下一个 token 进行采样。

最后一步是通过从此分布中采样来生成下一个标记温度超参数在此过程中起着关键作用。从数学上讲,这是一个非常简单的操作:模型输出 logit 简单地除以温度

  • temperature = 1:将 logits 除以 1 对 softmax 输出没有影响。

  • temperature < 1:较低的温度通过锐化概率分布使模型更具置信度和确定性,从而产生更可预测的输出。

  • temperature > 1:温度越高,概率分布越柔和,生成的文本就越随机——有些人称之为模型_“创造力_”。

调整温度,看看如何在确定性和多样化输出之间取得平衡!

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓
在这里插入图片描述

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓
在这里插入图片描述

<think>嗯,用户让我介绍Transformer技术,并且希望以DeepSeek博士的身份带他入门。首先,我需要回顾一下Transformer的基本概念和结构,确保自己理解正确。Transformer是2017年由Vaswani等人在“Attention Is All You Need”论文中提出的,主要用于自然语言处理任务,但现在应用范围更广了,比如计算机视觉。 用户可能已经了解过RNN或CNN,但想转向Transformer,所以需要解释为什么Transformer比之前的模型更好。比如,并行计算能力和长距离依赖处理。然后,我需要分解Transformer的核心组件:自注意力机制、位置编码、前馈网络、编码器和解码器结构。 自注意力机制是重点,得解释清楚Q、K、V矩阵的计算,以及如何通过缩放点积注意力得到权重。可能需要用简单的例子说明,比如句子中单词之间的关系。然后,多头注意力,为什么需要多个头,不同的注意力头可以捕捉不同方面的信息。 位置编码部分,因为Transformer没有递归或卷积结构,必须显式地加入位置信息。要解释正弦和余弦函数的位置编码方法,以及现在可能有的变体,比如可学习的位置编码。 编码器和解码器的结构差异,比如解码器有掩码自注意力,防止看到未来信息。每层的组成:自注意力、前馈网络、残差连接和层归一化。残差连接有助于梯度流动,层归一化稳定训练。 还需要提到训练细节,比如优化器、学习率预热,以及词嵌入和softmax前的线性变换共享权重。这些可能对实际应用有帮助。 用户可能需要知道应用场景,比如BERT、GPT都是基于Transformer,所以可以举这些例子。另外,Transformer不仅用于NLP,还可以用于CV,比如Vision Transformer。 可能的问题:自注意力的计算复杂度高,如何优化?比如稀疏注意力、局部窗口注意力等。或者Transformer训练需要大量数据,怎么处理小数据集的情况? 最后,确保语言通俗易懂,避免过多数学公式,但必要的公式(如softmax和点积)需要解释清楚。可能需要用比喻或示意图辅助理解,不过在文本中用文字描述。 需要检查是否有遗漏的部分,比如Transformer的变体或最新发展,但入门的话可能不需要太深入。总结步骤应该是先介绍背景和优势,再拆解结构,解释关键组件,最后应用和扩展。确保用户能跟随逻辑,逐步理解。</think>好的,我将带你逐步理解Transformer技术,尽量用通俗的语言和逻辑拆解核心概念。以下是入门指南: --- ### 一、Transformer解决了什么问题? **传统RNN/LSTM的缺陷**: - 无法高效并行计算(必须按时间步顺序处理) - 长距离依赖捕捉困难(信息传递会衰减) - 处理长文本时计算复杂度高 **Transformer的突破**: 1. **完全基于注意力机制**:抛弃循环结构 2. **并行计算**:所有位置同时处理 3. **全局依赖建模**:任意两个位置的直接关联 --- ### 二、Transformer核心结构(图示联想) 想象一个由编码器(左)和解码器(右)组成的机器: - **编码器**:理解输入内容(如将句子转化为特征) - **解码器**:生成输出内容(如翻译结果) ![Transformer结构简图](https://miro.medium.com/v2/resize:fit:720/format:webp/1*JZ2J6W0h3X4S2l4pD5oJNg.png) --- ### 三、五大核心组件详解 #### 1. 自注意力机制(Self-Attention) **作用**:让每个词与其他词直接“对话”,找出关联强度 **过程**: 1. 对每个词生成3个向量:Query(查询)、Key(键)、Value(值) 2. 计算词A对词B的注意力分数:`Q_A · K_B` 3. 缩放并Softmax归一化得到权重 4. 加权求和Value得到输出 **公式简化**: \[ \text{Attention}(Q,K,V) = \text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V \] #### 2. 多头注意力(Multi-Head Attention) - 并行运行多个自注意力机制 - 每个“头”学习不同的关注模式(如语法/语义) - 结果拼接后通过线性层融合 #### 3. 位置编码(Positional Encoding) - 问题:自注意力本身不考虑词序 - 解决方案:给每个词添加位置信号 - 方法:使用正弦/余弦函数生成位置向量,与词向量相加 #### 4. 前馈网络(Feed Forward Network) - 每个位置独立通过全连接层 - 常用两层线性变换+激活函数(如ReLU) #### 5. 残差连接与层归一化 - 残差连接:输入+输出,缓解梯度消失 - 层归一化(LayerNorm):稳定训练过程 --- ### 四、编码器-解码器工作流程 1. **编码器**(N个相同层): - 输入:源序列 + 位置编码 - 每层:多头自注意力 → 前馈网络 - 输出:上下文感知的特征表示 2. **解码器**(N个相同层): - 输入:目标序列(右移) + 位置编码 - 核心变化: - **掩码自注意力**:防止看到未来信息 - **交叉注意力**:连接编码器输出 --- ### 五、关键代码片段(PyTorch伪代码) ```python # 自注意力计算 def self_attention(query, key, value, mask=None): scores = torch.matmul(query, key.transpose(-2, -1)) / sqrt(d_k) if mask is not None: scores = scores.masked_fill(mask == 0, -1e9) weights = F.softmax(scores, dim=-1) return torch.matmul(weights, value) # Transformer块 class TransformerBlock(nn.Module): def __init__(self): self.attention = MultiHeadAttention() self.norm1 = LayerNorm() self.ffn = PositionwiseFFN() self.norm2 = LayerNorm() def forward(self, x): attn_out = self.attention(x) x = self.norm1(x + attn_out) # 残差连接+归一化 ffn_out = self.ffn(x) return self.norm2(x + ffn_out) ``` --- ### 六、Transformer的现代变体 1. **BERT**:仅用编码器的双向预训练模型 2. **GPT**:仅用解码器的自回归生成模型 3. **Vision Transformer**:将图像分块处理 4. **高效改进**:Linformer(低秩近似)、Reformer(局部敏感哈希) --- ### 七、入门学习路径建议 1. **基础理论**: - 精读原始论文《Attention Is All You Need》 - 理解矩阵维度变化(推荐Colab可视化教程) 2. **代码实践**: - 复现简单Transformer(字符级语言模型) - 使用HuggingFace库快速调用预训练模型 3. **延伸应用**: - 尝试机器翻译(Fairseq/OpenNMT) - 微调BERT进行文本分类 需要更深入的某个部分讲解,或具体代码示例,可以随时告诉我! 🚀
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值