大模型长文本所面临的主要问题

大模型上下文窗口的根本问题,是大模型的记忆问题**”**

大模型上下文窗口面临着复杂的问题,因此今天就来详细讨论一下这个问题。

一、大模型长文本

大模型(如 GPT-4、GPT-3.5、BERT 等)处理长文本时面临一些特殊的挑战和技术细节。对于 长文本 的处理,常见的问题包括模型的输入长度限制、生成质量控制、计算资源消耗等。以下是一些关于大模型处理长文本的要点:

1. 输入长度限制

大多数大语言模型(如 GPT、BERT 等)对输入的长度有一定的限制。以 GPT 系列为例,GPT-3 的最大输入长度通常为 2048 tokens(tokens 是模型处理的最小单位,可以是一个词、一部分词或者符号等)。而 GPT-4 等一些更先进的模型可能支持更长的输入长度,通常可达到 4096 tokens 或更多。

超过这个长度的文本需要被裁剪或分段处理。

  • 解决方案

  • 截断:如果文本超出模型支持的最大长度,通常会截断到最大长度,丢失一部分信息。

  • 分段处理:将长文本拆分成多个子段,每个段落单独输入模型,然后通过后处理将结果组合。

  • 窗口化:使用一个滑动窗口,将长文本分为多个重叠的部分,每次处理一个窗口并获得相关信息。

2. 长文本生成与推理的挑战

在生成长文本时,大模型可能会丧失上下文的连贯性,尤其是当输入文本较长且模型只关注局部上下文时。生成的文本可能缺乏一致性,或者前后内容有明显的脱节。

  • 解决方案

  • 增量生成:可以逐步生成文本,即每次生成一段,然后将生成的内容作为上下文提供给模型,逐渐扩展文本的长度。

  • 精心设计的提示词(Prompt Engineering):对于需要生成长文本的任务,可以设计更合理的提示词,引导模型生成连贯的内容。

  • 模型微调:可以对模型进行微调,使其适应生成长文本的任务,尤其是在特定领域或者特定样式的文本生成中。

3. 计算资源消耗

处理长文本需要更高的计算资源,因为模型需要处理更多的 tokens,计算成本随之增加。特别是当模型对每个 token 进行自注意力计算时,计算复杂度通常是 O(n²),其中 n 是 tokens 的数量。

  • 解决方案

  • 分布式计算:利用分布式训练和推理框架,分担计算压力。

  • 稀疏化技术:一些新型模型,如 稀疏自注意力机制,旨在减少计算量,可以处理更长文本。

4. 长文本的摘要与信息抽取

对于长文本的处理,有时并不是希望生成完整的长文本,而是对长文本进行摘要、关键词提取、情感分析等任务。大模型在这种任务中同样面临文本长度的挑战。

  • 解决方案

  • 抽取式摘要:通过模型提取长文本中的关键信息并生成简短的摘要。

  • 生成式摘要:使用生成模型对长文本进行总结和重写,生成一个简洁的摘要。

5. 上下文的丧失和记忆问题

对于长文本,尤其是跨段落、跨章节的文本,模型可能在处理时丧失上下文信息。即使是 GPT-4 等较为强大的模型,依然会面临“记忆衰减”的问题,即前面生成的内容对后面生成的内容影响较小,尤其是在长段文本的生成中。

  • 解决方案

  • 结构化输入:将长文本分成结构化的部分,例如段落、章节等,在每个部分内保留上下文信息。

  • 外部记忆机制:结合外部存储(如数据库或缓存机制)来“记住”之前的上下文,提高模型在处理长文本时的表现。

在这里插入图片描述

6. 具体应用场景中的长文本处理

根据不同的应用场景,长文本的处理方式和技术细节也会有所不同。以下是几种常见的场景和相关技术:

长文本问答(Long-Form Question Answering)
  • 问题:如何从一个长篇文章中提取出问题的答案?

  • 解决方案:采用 分段式处理基于上下文的增强型问答模型。可以将文章分为若干段,每次处理一个段落,并结合推理能力生成正确答案。

长文本生成(Long-Form Text Generation)
  • 问题:如何生成一篇长篇文章,确保内容连贯?

  • 解决方案:使用 增量生成分段式生成 方法。每次生成一段内容,然后根据生成的内容继续生成后续内容。

长文本摘要(Long-Form Text Summarization)
  • 问题:如何从长篇文章中提取出关键信息?

  • 解决方案:采用 抽取式摘要生成式摘要 方法,确保对关键信息的提取和整合。

二、总结

处理大模型的长文本任务时,最大的挑战通常是 输入长度限制计算资源消耗、以及 上下文保持。可以通过分段处理滑动窗口外部记忆机制等方法来解决这些问题,并且结合不同的应用需求选择适当的技术手段来确保模型能够有效地处理和生成长文本。

三、最后分享

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 2024行业报告

行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。

在这里插入图片描述

5. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

6. 大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值