AI大模型 | 什么是AI(Agent)智能体?

一、智能体介绍

智能体(Agent)是人工智能(AI)和计算机科学中的一个核心概念,它指的是能够在特定环境中自主执行任务或作出决策的实体。智能体可以是软件形式,如聊天机器人、推荐系统、游戏中的角色等;也可以是硬件形式,如自动驾驶汽车、服务机器人等。以下是智能体的几个关键特点:

  1. 自主性(Autonomy): 智能体能够在没有直接外部干预的情况下控制其自身行为和内部状态。它们可以独立地操作,并对自己的行为做出决策。

  2. 社会能力(Social Ability): 智能体能够与其他智能体(包括人类)交互和沟通。它们可以理解其他智能体的意图,并在多智能体系统中协同工作。

  3. 反应性(Reactivity): 智能体能够感知其环境并对环境变化做出快速反应。它们可以根据传感器输入或外部事件来调整自己的行为。

  4. 主动性(Pro-activeness): 智能体不仅能够响应环境,还能够主动采取行动以实现其设计目标。这意味着智能体能够预测未来事件并采取预防措施。

  5. 智能性(Intelligence): 智能体能够使用人工智能技术,如机器学习、自然语言处理、计算机视觉等,来提高其决策和问题解决的能力。

智能体的应用非常广泛,包括但不限于:

  • 个人助理

    如智能手机上的语音助手,可以帮助用户设置提醒、搜索信息等。

  • 客户服务

    在线客服机器人,可以自动回答用户的常见问题。

  • 智能家居

    控制家庭设备的智能系统,如智能恒温器、智能灯泡等。

  • 工业自动化

    在生产线上执行特定任务的机器人。

  • 医疗辅助

    辅助医生进行诊断和治疗的智能系统。

  • 金融服务

    进行交易、风险评估和欺诈检测的智能算法。

智能体的发展是人工智能领域的一个重要方向,它们正在变得越来越复杂和智能,能够在各种环境中执行越来越复杂的任务。

二、智能体框架

智能体框架是构建智能体系统的关键技术,它们提供了开发、部署和运行智能体的基础设施和工具。以下是一些主流的智能体框架及其特点

单智能体框架

  1. BabyAGI
  • 简介:作为早期agent的实践,babyagi框架简单实用,里面的任务优先级排序模块是一个比较独特的feature。

  • Git仓库地址:https://github.com/yoheinakajima/babyagi

多智能体框架

  1. AutoGen(微软)
  • 简介:AutoGen由微软推出,包含用户智能体和助手智能体两个核心角色。用户智能体负责提出编程需求或编写提示词,助手智能体则负责生成和执行代码。该框架擅长于代码任务的多智能体编排,同时也具备处理其他类型任务的能力。

  • Git仓库地址:https://github.com/microsoft/autogen

  1. CrewAI
  • 简介:CrewAI是一个直观、易于配置的工具,用于快速搭建Multi-AI Agent任务演示。它允许创建新智能体并将其融入系统,操作简单,即使是非技术背景的用户也能轻松上手。

  • Git仓库地址:https://github.com/crewAIInc/crewAI

  1. LangGraph
  • 简介:用于构建具有状态和多角色应用程序的库,主要用于创建智能体和多智能体工作流。

  • Git仓库地址:https://github.com/langchain-ai/langgraph

  1. Magentic-One
  • 简介:微软推出的高性能通用智能体系统,采用多智能体架构。

  • Git仓库地址:https://github.com/microsoft/autogen/tree/main/python/packages/autogen-magentic-one

  1. MetaGPT
  • 简介:以一行需求作为输入,输出用户故事/竞争分析/需求/数据结构/API/文档等。MetaGPT是一个创新框架,它将人类工作流程作为元编程方法整合到基于LLM的多智能体协作中。该框架使用标准化操作程序(SOP)编码为提示,要求模块化输出,以增强代理的领域专业知识并减少错误。实验表明,MetaGPT在协作软件工程基准上生成了更连贯和正确的解决方案,展示了将人类知识整合进多智能体系统的潜力。

  • Git仓库地址:https://github.com/geekan/MetaGPT

  1. AgentScope
  • 简介:阿里开源的Multi-agent框架,支持分布式框架,并且做了工程链路上的优化及监控。

  • Git仓库地址:https://github.com/modelscope/agentscope

  1. 斯坦福虚拟小镇
  • 简介:虚拟小镇作为早期的multi-agent项目,很多设计也影响到了其他multi-agent框架,里面的反思和记忆检索feature比较有意思,模拟人类的思考方式。

  • Git地址:https://github.com/joonspk-research/generative_agents

这些框架代表了智能体技术的不同方向和应用,从软件开发到工作流自动化,再到多智能体协作,它们为智能体的开发和应用提供了强大的支持。开发者可以根据自己的需求选择合适的框架来构建特定的智能体应用。

三、总结

Agent的核心逻辑是让LLM根据动态变化的环境信息,选择执行具体的行动,并反过来影响环境,通过多轮迭代重复执行上述步骤,直到完成目标。总结就是:感知§ — 规划§ — 行动(A),智能体在工程实现上可以拆分出四大块核心模块:推理、记忆、工具、行动

单智能体= 大语言模型(LLM) + 观察(obs) + 思考(thought) + 行动(act) + 记忆(mem)

多智能体=智能体 + 环境 + SOP + 评审 + 通信 + 成本


四、如何系统学习掌握AI大模型?

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 2024行业报告

行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。

在这里插入图片描述

5. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

6. 大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值