高斯混合模型(Gaussian Mixture Model,简称GMM)的数学形式与Python实现

115 篇文章 ¥59.90 ¥99.00
高斯混合模型(GMM)是复杂数据分布建模工具,由多个高斯分量构成,每个分量有自己的均值和协方差。通过期望最大化(EM)算法估计模型参数,本文提供了一个Python实现GMM的示例代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

高斯混合模型(Gaussian Mixture Model,简称GMM)的数学形式与Python实现

高斯混合模型(Gaussian Mixture Model,简称GMM)是一种常用的概率模型,用于对复杂的数据分布进行建模和拟合。它由多个高斯分布组成,每个高斯分布被称为一个分量(component),表示数据的一个子群。GMM的数学形式可以描述为多个高斯分布的线性组合,每个高斯分布具有自己的均值和协方差。

假设我们有一个包含N个样本的数据集X,每个样本具有D个维度。GMM的目标是根据这些数据来估计模型的参数,包括每个分量的均值、协方差和混合系数(表示每个分量在整个数据集中的权重)。这个过程可以使用期望最大化算法(Expectation Maximization,简称EM)来实现。

下面是一个用Python实现GMM的示例代码:

import numpy as np
from scipy.stats import
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值