高斯混合模型(Gaussian Mixture Model,简称GMM)的数学形式与Python实现
高斯混合模型(Gaussian Mixture Model,简称GMM)是一种常用的概率模型,用于对复杂的数据分布进行建模和拟合。它由多个高斯分布组成,每个高斯分布被称为一个分量(component),表示数据的一个子群。GMM的数学形式可以描述为多个高斯分布的线性组合,每个高斯分布具有自己的均值和协方差。
假设我们有一个包含N个样本的数据集X,每个样本具有D个维度。GMM的目标是根据这些数据来估计模型的参数,包括每个分量的均值、协方差和混合系数(表示每个分量在整个数据集中的权重)。这个过程可以使用期望最大化算法(Expectation Maximization,简称EM)来实现。
下面是一个用Python实现GMM的示例代码:
import numpy as np
from scipy.stats import