基于贝叶斯网络优化门控循环单元(BO-GRU)的时间序列数据预测
时间序列数据预测是许多领域中的重要问题,如金融、气象和股票市场等。为了解决这一问题,可以使用递归神经网络(RNN)模型,其中门控循环单元(GRU)是一种常用的选择。在本文中,我们将介绍一种基于贝叶斯网络优化的门控循环单元(BO-GRU)方法来改进时间序列数据的预测性能,并提供相应的MATLAB代码实现。
BO-GRU模型的核心思想是利用贝叶斯优化方法对GRU模型进行调优,以提高其在时间序列预测任务中的性能。下面是使用MATLAB实现BO-GRU模型的代码示例:
% 导入时间序列数据
data = load('timeseries_data.mat');
X = dat