基于MATLAB的EEMD+IWOA+LSSVM电力负荷预测

本文介绍了利用MATLAB进行电力负荷预测的方法,结合EEMD进行序列分解,IWOA优化LSSVM超参数,提高预测准确性和稳定性。EEMD适应非线性和非平稳序列,IWOA模拟鱼群行为优化,LSSVM进行支持向量回归。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于MATLAB的EEMD+IWOA+LSSVM电力负荷预测

电力负荷预测一直是电力系统运行和管理中的重要任务。准确地预测电力负荷可以帮助电力公司和供电部门合理规划电力调度,提高电力系统的可靠性和经济性。本文介绍了一种基于MATLAB的电力负荷预测方法,该方法结合了经验模态分解(EEMD)、鱼群算法优化(IWOA)和最小二乘支持向量机(LSSVM),通过这种组合方式提高了电力负荷预测的准确性和稳定性。

首先,我们介绍经验模态分解(EEMD)方法。EEMD是一种非参数分解方法,可以将原始时间序列分解为一系列固有模态函数(IMF)。每个IMF代表了不同的频率成分,通常由高频到低频排列。EEMD方法可以更好地适应非线性和非平稳序列的特点,适用于电力负荷预测。以下是MATLAB中实现EEMD的源代码:

function IMF = EEMD(signal, numModes
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值