基于MATLAB的EEMD+IWOA+LSSVM电力负荷预测
电力负荷预测一直是电力系统运行和管理中的重要任务。准确地预测电力负荷可以帮助电力公司和供电部门合理规划电力调度,提高电力系统的可靠性和经济性。本文介绍了一种基于MATLAB的电力负荷预测方法,该方法结合了经验模态分解(EEMD)、鱼群算法优化(IWOA)和最小二乘支持向量机(LSSVM),通过这种组合方式提高了电力负荷预测的准确性和稳定性。
首先,我们介绍经验模态分解(EEMD)方法。EEMD是一种非参数分解方法,可以将原始时间序列分解为一系列固有模态函数(IMF)。每个IMF代表了不同的频率成分,通常由高频到低频排列。EEMD方法可以更好地适应非线性和非平稳序列的特点,适用于电力负荷预测。以下是MATLAB中实现EEMD的源代码:
function IMF = EEMD(signal, numModes