时间序列分析1|AR模型|MA模型|ARMA模型

时间序列的基本概念

时间序列的定义

自然界以及社会经济生活中存在着大量的指标都按照年、季、月或日等进行统计,随着时间的推移,就形成了相应的时间序列
时间序列是某一统计指标长期变动的数量表现
时间序列分析就是分析和研究时间序列在长期变动过程中所存在的统计规律性

  • 时间序列:按时间顺序排列的一组随机变量
    … , X 1 , X 2 , … , X t , … \dots,X_{1},X_{2},\dots,X_{t},\dots ,X1,X2,,Xt,
    简记为 { X t , t ∈ T } 或 { X t } \left \{ X_{t},t\in T \right \} 或\left\{ X_{t}\right\} {Xt,tT}{Xt}
  • 观测值序列:时间序列的n个有序观测值,称之为长度为n的观测值序列
    x 1 , x 2 , … , x n 或 { x t : t = 1 , 2 , … , n } x_{1},x_{2},\dots,x_{n}或\left\{ x_{t}:t=1,2,\dots,n \right\} x1,x2,,xn{xt:t=1,2,,n}
  • 时间序列分析的主要目的
  1. 揭示时间变化的统计规律性
  2. 预测未来事件
  3. 控制将来事件
时间序列的特征统计量

均值:时间序列 X t X_{t} Xt的数学期望
μ X ( t ) = E [ X t ] ,   t ∈ T \mu_{X}(t)=E[X_{t}],\ t\in T μX(t)=E[Xt], tT
方差:时间序列 X t X_{t} Xt的方差,反映了时间序列 X t X_{t} Xt取值的离散程度
D X ( t ) = γ X ( t , t ) = E [ X t − μ X ( t ) ] 2 ,   t ∈ T D_{X}(t)=\gamma_{X}(t,t)=E[X_{t}-\mu_{X}(t)]^{2},\ t\in T DX(t)=γX(t,t)=E[XtμX(t)]2, tT
自协方差: X t X_{t} Xt X s X_{s} Xs的协方差
γ X ( t , s ) = E [ ( X t − μ X ( t ) ) ( X s − μ X ( s ) ) ] ,   t , s ∈ T \gamma_{X}(t, s)=E[(X_{t}-\mu_{X}(t))(X_{s}-\mu_{X}(s))],\ t,s\in T γX(t,s)=E[(XtμX(t))(XsμX(s))], t,sT
自相关系数:除以标准差,反映时间序列前后不同期的互相的线性的相关程度
ρ X ( t , s ) = γ X ( t , s ) D X ( t ) ⋅ D X ( s ) ,   t , s ∈ T \rho_{X}(t,s)=\frac{\gamma_{X}(t,s)}{\sqrt{ D_{X}(t)\cdot D_{X}(s) }},\ t,s\in T ρX(t,s)=DX(t)DX(s) γX(t,s), t,sT

特征统计量的估计

已知时间序列
{ X t ,   t ∈ T } \left\{ X_{t},\ t\in T\right\} {Xt, tT}
在n个时刻的观测值 x 1 , x 2 , … , x n x_{1},x_{2},\dots,x_{n} x1,x2,,xn
样本均值
μ ^ = x ˉ = 1 n ∑ i = 1 n x i \hat{\mu}=\bar{x}=\frac{1}{n}\sum_{i=1}^{n}x_{i} μ^=xˉ=n1i=1nxi
样本方差
γ ^ ( 0 ) = 1 n ∑ i = 1 n ( x i − x ˉ ) 2 \hat{\gamma}(0)=\frac{1}{n}\sum_{i=1}^{n}(x_{i}-\bar{x})^{2} γ^(0)=n1i=1n(xixˉ)2
样本延迟k自协方差
γ ^ ( k ) = 1 n ∑ i = 1 n − k ( x i − x ˉ ) ( x i + k − x ˉ ) \hat{\gamma}(k)=\frac{1}{n}\sum_{i=1}^{n-k}(x_{i}-\bar{x})(x_{i+k}-\bar{x}) γ^(k)=n1i=1nk(xixˉ)(xi+kxˉ)
样本延迟k自相关系数
ρ ^ ( k ) = γ ^ ( k ) γ ^ ( 0 ) = ∑ i = 1 n − k ( x i − x ˉ ) ( x i + k − x ˉ ) ∑ i = 1 n ( x i − x ˉ ) 2 \hat{\rho}(k)=\frac{\hat{\gamma}(k)}{\hat{\gamma}(0)}=\frac{\sum_{i=1}^{n-k}(x_{i}-\bar{x})(x_{i+k}-\bar{x})}{\sum_{i=1}^{n}(x_{i}-\bar{x})^{2}} ρ^(k)=γ^(0)γ^(k)=i=1n(xixˉ)2i=1nk(xixˉ)(xi+kxˉ)

时间序列的平稳性
  • 严平稳
    如果时间序列 { X t , t ∈ T } \left\{ X_{t},t\in T\right\} {Xt,tT}的概率分布与时间t无关,则称该时间序列为严平稳的
    严平稳要求时间序列的所有统计性质都不会随着时间的推移而发生变化,这个要求比较苛刻。
  • 宽平稳
    如果时间序列 { X t , t ∈ T } \left\{ X_{t},t\in T\right\} {Xt,tT}满足
    E [ X t ] = μ ,   μ 为常数 , ∀ t ∈ T E [ X t 2 ] 为常数, ∀ t ∈ T γ X ( t , s ) = γ X ( k + t , k + s ) ,   ∀ t , s , k 且 k + s , k + t ∈ T \begin{array}{} E[X_{t}]=\mu,\ \mu为常数, \forall t\in T \\ E[X_{t}^{2}]为常数,\forall t\in T \\ \gamma_{X}(t,s)=\gamma_{X}(k+t,k+s),\ \forall t,s,k且k+s,k+t\in T \end{array} E[Xt]=μ, μ为常数,tTE[Xt2]为常数,tTγX(t,s)=γX(k+t,k+s), t,s,kk+s,k+tT
    则称 { X t , t ∈ T } \left\{ X_{t},t\in T\right\} {Xt,tT}是宽平稳的
    宽平稳只要求时间序列的低阶矩(一阶、二阶)都不会随着时间的推移而发生变化
时间序列分析方法
  • 确定性时间序列分析
    长期变动趋势 T t T_{t} Tt:随时间推移逐渐增加或减少的长期变化趋势
    季节变动趋势 S t S_{t} St:依一固定周期重复性的波动趋势
    循环变动趋势 C t C_{t} Ct:周期长度不固定的波动趋势
    不规则变动 R t R_{t} Rt:由许多不确定因素引起的变化(不可预测性)
  • 确定性时间序列分析模型
  1. 加法模型
    X t = T t + S t + C t + R t X_{t}=T_{t}+S_{t}+C_{t}+R_{t} Xt=Tt+St+Ct+Rt
  2. 乘法模型
    X t = T t S t C t R t X_{t}=T_{t}S_{t}C_{t}R_{t} Xt=TtStCtRt
  3. 混合模型
    X t = T t S t + R t ;   X t = S t + T t C t R t X_{t}=T_{t}S_{t}+R_{t};\ X_{t}=S_{t}+T_{t}C_{t}R_{t} Xt=TtSt+Rt; Xt=St+TtCtRt
    一般地, E ( R t ) = 0 ,   D ( R t ) = σ 2 E(R_{t})=0,\ D(R_{t})=\sigma^{2} E(Rt)=0, D(Rt)=σ2
  • 随机性时间序列分析
  1. 线性时间序列模型
    1. 自回归滑动平均(ARMA)模型
    2. 自回归综合滑动平均(ARIMA)模型
    3. 季节ARIMA(SARIMA)模型
  2. 非线性时间序列模型
    1. 自激励门限自回归(SETAR)模型
    2. 双线性(BL)模型
    3. 指数自回归(EAR)模型
时间序列建模的BJ方法

Box&Jenkins(1970):
《Time Series Analysis: Forecasting and Control》提出的一种时间序列建模方法
B-J方法:是对时间序列进行模型识别估计和诊断的系统方法,主要适用于单变量、同方差场合的线性模型,是线性时间序列模型的一种经典建模方法。

AR模型的概念

引言ARMA

在时间序列的统计分析中,平稳时间序列是一类基本且重要的随机序列
平稳时间序列的分析和建模最常见的就是ARMA(Auto Regressive Moving Average)模型
ARMA模型在实际应用中有许多优点:

  • 由于是线性模型,便于确定模型,待确定参数少
  • 便于分析数据的结构和内在性质
  • 便于在最小方差意义下进行最佳预测和控制
    一般地,ARMA模型可以分为三种情形:
  1. AR(Auto Regressive)模型
  2. MA(Moving Average)模型
  3. ARMA(Auto Regressive Moving Average)模型
AR模型的概念

由于许多实际系统惯性的作用,时间序列往往存在着前后依存关系
如果变量 X t X_{t} Xt当前的取值与过去直到t-p期的取值相关,可建立:
X t = f ( x t − 1 , X t − 2 , … , X t − p ) X_{t}=f(x_{t-1},X_{t-2},\dots,X_{t-p}) Xt=f(xt1,Xt2,,Xtp)
X t = ϕ 0 + ϕ 1 X t − 1 + ⋯ + ϕ p X t − p + ε t X_{t}=\phi_{0}+\phi_{1}X_{t-1}+\dots+\phi_{p}X_{t-p}+\varepsilon_{t} Xt=ϕ0+ϕ1Xt1++ϕpXtp+εt
p阶自回归模型—— A R ( p ) AR(p) AR(p)

  1. AR§模型的定义,p阶自回归模型
    AR§模型的一般形式为
    { X t = ϕ 0 + ϕ 1 X t − 1 + ⋯ + ϕ p X t − p + ε t ϕ p ≠ 0 ε t ∼ N ( 0 , σ 2 ) ∀ s < t ,   E ( X s , ε t ) = 0 \left\{\begin{matrix} X_{t}=\phi_{0}+\phi_{1}X_{t-1}+\dots+\phi_{p}X_{t-p}+\varepsilon_{t} \\ \phi_{p}\ne 0 \\ \varepsilon_{t} \sim N(0,\sigma^{2}) \\ \forall s < t,\ E(X_{s},\varepsilon_{t})=0 \end{matrix}\right. Xt=ϕ0+ϕ1Xt1++ϕpXtp+εtϕp=0εtN(0,σ2)s<t, E(Xs,εt)=0
    当前的模型的误差项的取值与前面的任何一期 X s X_{s} Xs时间序列的取值不相关
    ϕ 0 = 0 \phi_{0}=0 ϕ0=0,称为中心化AR§模型
    X t = ϕ 1 X t − 1 + ϕ 2 X t − 2 + ⋯ + ϕ p X t − p + ε t X_{t}=\phi_{1}X_{t-1}+\phi_{2}X_{t-2}+\dots+\phi_{p}X_{t-p}+\varepsilon_{t} \\ Xt=ϕ1Xt1+ϕ2Xt2++ϕpXtp+εt
  2. AR§序列中心化变换

    Y t = X t − μ Y_{t}=X_{t}-\mu Yt=Xtμ
    其中,
    μ = ϕ 0 1 − ϕ 1 − ⋯ − ϕ p \mu=\frac{\phi_{0}}{1-\phi_{1}-\dots-\phi_{p}} μ=1ϕ1ϕpϕ0
    代入
    X t = ϕ 0 + ϕ 1 X t − 1 + ⋯ + ϕ p X t − p + ε t X_{t}=\phi_{0}+\phi_{1}X_{t-1}+\dots+\phi_{p}X_{t-p}+\varepsilon_{t} Xt=ϕ0+ϕ1Xt1++ϕpXtp+εt
    可得
    Y t = ϕ 1 ′ Y t − 1 + ϕ 2 ′ Y t − 2 + ⋯ + ϕ p ′ Y t − p + ε t Y_{t}=\phi_{1}'Y_{t-1}+\phi_{2}'Y_{t-2}+\dots+\phi_{p}'Y_{t-p}+\varepsilon_{t} \\ Yt=ϕ1Yt1+ϕ2Yt2++ϕpYtp+εt
    { Y t } \left\{ Y_{t}\right\} {Yt}称为 { X t } \left\{ X_{t}\right\} {Xt}的中心化序列
  3. AR§—自回归多项式
    引入延迟算子B
    B X t = X t − 1 BX_{t}=X_{t-1} BXt=Xt1
    B 2 = B B X t = X t − 2 B^{2}=B BX_{t}=X_{t-2} B2=BBXt=Xt2
    中心化AR§模型可简记为
    X t = ϕ 1 X t − 1 + ϕ 2 X t − 2 + ⋯ + ϕ p X t − p + ε t X_{t}=\phi_{1}X_{t-1}+\phi_{2}X_{t-2}+\dots+\phi_{p}X_{t-p}+\varepsilon_{t} Xt=ϕ1Xt1+ϕ2Xt2++ϕpXtp+εt
    ( 1 − ϕ 1 B − ϕ 2 B 2 − ⋯ − ϕ p B p ) X t = ε t (1-\phi_{1}B-\phi_{2}B^{2}-\dots-\phi_{p}B^{p})X^{t}=\varepsilon_{t} (1ϕ1Bϕ2B2ϕpBp)Xt=εt
    Φ ( B ) X t = ε t \Phi(B)X_{t}=\varepsilon_{t} Φ(B)Xt=εt
    其中,自回归多项式
    Φ ( B ) = 1 − ϕ 1 B − ϕ 2 B 2 − ⋯ − ϕ p B p \Phi(B)=1-\phi_{1}B-\phi_{2}B^{2}-\dots-\phi_{p}B^{p} Φ(B)=1ϕ1Bϕ2B2ϕpBp
AR§模型的平稳性

AR模型是平稳时间序列的拟合模型,但AR模型本身不一定是平稳的
![[Pasted image 20240820093654.png]]

mdl = arima('Constant', 0, 'ARlags', [1], 'AR', {0.8}, 'Variance', 1)
x = simulate(mdl, 1000);
plot(x)
  • arima,建立AR模型
  • Constant,0,指定AR模型的常数量,是中心化模型
  • ARlags,1,指定自回归模型的滞后阶数是1
  • AR,{0.8},指定的滞后阶数对应的项的系数是0.8
  • Variance,1,指定误差项服从的白噪声的方差
  • simulate。随机模拟
    ![[Pasted image 20240820094233.png]]
AR模型的平稳性判别

特征根判别法
AR§模型平稳的充要条件是其特征方程的p个特征值根都在单位圆内
X t = ϕ 1 X t − 1 + ϕ 2 X t − 2 + ⋯ + ϕ p X t − p + ε t X_{t}=\phi_{1}X_{t-1}+\phi_{2}X_{t-2}+\dots+\phi_{p}X_{t-p}+\varepsilon_{t} Xt=ϕ1Xt1+ϕ2Xt2++ϕpXtp+εt
特征方程为
λ p − ϕ 1 λ p − 1 − ϕ 2 λ p − 2 − ⋯ − ϕ p = 0 \lambda^{p}-\phi_{1}\lambda^{p-1}-\phi_{2}\lambda^{p-2}-\dots-\phi_{p}=0 λpϕ1λp1ϕ2λp2ϕp=0
∣ λ i ∣ < 1   ( i = 1 , 2 , … , p ) | \lambda_{i}|<1\ (i=1,2,\dots,p) λi<1 (i=1,2,,p)

AR模型的判据

AR§模型自相关系数的性质

定义
滞后k自相关系数:随机变量 X t X_{t} Xt X t − k X_{t-k} Xtk的相关系数
ρ k = ρ X t , X t − k = E { ( X t − E ( X t ) ) ( X t − k − E ( X t − k ) ) } E { ( X t − E ( X t ) ) 2 } \rho_{k}=\rho_{X_{t},X_{t-k}}=\frac{E\left\{ (X_{t}-E(X_{t}))(X_{t-k}-E(X_{t-k}))\right\}}{E\left\{(X_{t}-E(X_{t}))^{2}\right\}} ρk=ρXt,Xtk=E{(XtE(Xt))2}E{(XtE(Xt))(XtkE(Xtk))}
X t X_{t} Xt X t − k X_{t-k} Xtk的协方差除以 X t X_{t} Xt的方差

平稳AR§模型自相关系数的性质
ρ k = ∑ i = 1 p c i λ i k , c 1 , c 2 , … , c p 不全为零 \rho_{k}=\sum_{i=1}^{p}c_{i}\lambda_{i}^{k},\quad c_{1},c_{2},\dots,c_{p}不全为零 ρk=i=1pciλik,c1,c2,,cp不全为零
由于 ∣ λ i ∣ < 1 ( i = 1 , 2 , … , p ) |\lambda_{i}|<1\quad (i=1,2,\dots,p) λi<1(i=1,2,,p)
ρ k = ∑ i = 1 p c i λ i k → 0   ( k → ∞ ) \rho_{k}=\sum_{i=1}^{p}c_{i}\lambda_{i}^{k}\to 0\ (k\to \infty) ρk=i=1pciλik0 (k)
ρ k \rho_{k} ρk呈负指数衰减,且不会在有限阶后恒为0
AR§模型自相关系数有拖尾性

例1
![[Pasted image 20240820100244.png]]

mdl = arima('Constant', 0,...
'ARLags',[1], ...
'AR', {0.8}, ...
'Distribution','Gaussian',...
'Variance', 1)
x = simulate(mdl, 1000); 
autocorr(x)
  • autocorr,绘制自相关系数模型
    ![[Pasted image 20240820100540.png]]

例2
![[Pasted image 20240820100621.png]]

mdl = arima('Constant', 0,...
'ARLags',[1, 2], ...
'AR', {1, -0.5}, ...
'Distribution','Gaussian',...
'Variance', 1)
x = simulate(mdl, 1000); 
autocorr(x)

![[Pasted image 20240820100744.png]]

AR§模型偏自相关系数的性质

定义
滞后k偏自相关系数:在给定中间k-1个随机变量 X t − k + 1 , X t − k + 2 , … , X t − 1 X_{t-k+1},X_{t-k+2},\dots,X_{t-1} Xtk+1,Xtk+2,,Xt1的条件下, X t X_{t} Xt X t − k X_{t-k} Xtk的相关系数
ϕ k k = ρ X t − k , X t X t − 1 , … , X t − k + 1 \phi_{kk}=\rho_{X_{t-k},X_{t}}X_{t-1},\dots,X_{t-k+1} ϕkk=ρXtk,XtXt1,,Xtk+1
滞后k偏自相关系数可以理解为:在剔除了中间k-1个随机变量的干扰之后, X t − k X_{t-k} Xtk X t X_{t} Xt影响的相关系数

计算
性质:滞后k偏自相关系数就等于如下k阶自回归模型第k个回归系数的值
{ ρ 1 = ϕ k 1 ρ 0 + ϕ k 2 ρ 1 + ⋯ + ϕ k k ρ k − 1 ρ 2 = ϕ k 1 ρ 1 + ϕ k 2 ρ 0 + ⋯ + ϕ k k ρ k − 2 … ρ k = ϕ k 1 ρ k − 1 + ϕ k 2 ρ k − 2 + ⋯ + ϕ k k ρ 0 \left\{\begin{matrix} \rho_{1}=\phi_{k1}\rho_{0}+\phi_{k2}\rho_{1}+\dots+\phi_{kk}\rho_{k-1} \\ \rho_{2}=\phi_{k1}\rho_{1}+\phi_{k2}\rho_{0}+\dots+\phi_{kk}\rho_{k-2} \\ \dots \\ \rho_{k}=\phi_{k1}\rho_{k-1}+\phi_{k2}\rho_{k-2}+\dots+\phi_{kk}\rho_{0} \end{matrix}\right. ρ1=ϕk1ρ0+ϕk2ρ1++ϕkkρk1ρ2=ϕk1ρ1+ϕk2ρ0++ϕkkρk2ρk=ϕk1ρk1+ϕk2ρk2++ϕkkρ0
ϕ k k = D k D \phi_{kk}=\frac{D_{k}}{D} ϕkk=DDk

p阶截尾性
平稳AR§模型的偏自相关系数具有p阶截尾性
ϕ k k = 0 , ∀ k > p \phi_{kk}=0,\quad \forall k>p ϕkk=0,k>p

例1
![[Pasted image 20240820102619.png]]

mdl = arima('Constant', 0,...
'ARLags',[1], ...
'AR', {0.8}, ...
'Distribution','Gaussian',...
'Variance', 1)
x = simulate(mdl, 1000); 
parcorr(x)
  • parcorr绘制偏自相关系数图形
    ![[Pasted image 20240820102734.png]]

例2
![[Pasted image 20240820102823.png]]

mdl = arima('Constant', 0,...
'ARLags',[1, 2], ...
'AR', {1, -0.5}, ...
'Distribution','Gaussian',...
'Variance', 1)
x = simulate(mdl, 1000); 
parcorr(x)

![[Pasted image 20240820102902.png]]

AR§模型的判据
  • 自相关系数的拖尾
  • 偏自相关系数p阶截尾

    ![[Pasted image 20240820114747.png]]
    ![[Pasted image 20240820114758.png]]
load data1.mat x;  %x为某平稳序列
figure(1), autocorr(x)
figure(2), parcorr(x)

![[Pasted image 20240820114814.png]]

mdl = arima(2, 0, 0)  %创建AR(2)模型
EstMdl = estimate(mdl, x);
  • estimate,估计模型
Constant 0.016
AR{1}    1.04
AR{2}    -0.44
Variance 1.10

X t = 0.016 + 1.04 X t − 1 − 0.44 X t − 2 + ε t X_{t}=0.016+1.04X_{t-1}-0.44X_{t-2}+\varepsilon_{t} Xt=0.016+1.04Xt10.44Xt2+εt
ε t ∼ N ( 0 , 1.10 ) \varepsilon_{t}\sim N(0,1.10) εtN(0,1.10)

MA模型

MA模型的概念

时间序列 { X t } \left\{ X_{t} \right\} {Xt}的记忆是关于过去外部干扰的记忆
X t = f ( ε t − 1 , ε t − 2 , … , ε t − q ) + ε t X_{t}=f(\varepsilon_{t-1},\varepsilon_{t-2},\dots,\varepsilon_{t-q})+\varepsilon_{t} Xt=f(εt1,εt2,,εtq)+εt
时间序列 { X t } \left\{ X_{t} \right\} {Xt}可以表示成现在干扰值和过去直到t-q期干扰值的线性组合
q阶滑动平均模型——MA(q)

  1. MA(q)模型的定义——q阶移动平均模型
    MA(q)模型的一般形式为
    { X t = μ + ε t − θ 1 ε t − 1 − θ 2 ε t − 2 − ⋯ − θ q ε t − q θ q ≠ 0 ε t ∼ N ( 0 , σ 2 ) ∀ s < t ,   E ( X s ε t ) = 0 \left\{\begin{matrix} X_{t}=\mu+\varepsilon_{t}-\theta_{1}\varepsilon_{t-1}-\theta_{2}\varepsilon_{t-2}-\dots-\theta_{q}\varepsilon_{t-q} \\ \theta_{q}\ne 0 \\ \varepsilon_{t}\sim N(0,\sigma^{2}) \\ \forall s<t,\ E(X_{s}\varepsilon_{t})=0 \end{matrix}\right. Xt=μ+εtθ1εt1θ2εt2θqεtqθq=0εtN(0,σ2)s<t, E(Xsεt)=0
    当前干扰值是完全随机的干扰,与前面任何一期 X s X_{s} Xs对应的值没有关系
    特别当 μ = 0 \mu=0 μ=0时,称为中心化MA(q)模型
    X t = ε t − θ 1 ε t − 1 − θ 2 ε t − 2 − ⋯ − θ q ε t − q X_{t}=\varepsilon_{t}-\theta_{1}\varepsilon_{t-1}-\theta_{2}\varepsilon_{t-2}-\dots-\theta_{q}\varepsilon_{t-q} Xt=εtθ1εt1θ2εt2θqεtq
  2. MA(q)——滑动平均系数多项式
    引入延迟算子B,中心化MA(q)模型可简记为
    X t = Θ ( B ) ε t X_{t}=\Theta(B)\varepsilon_{t} Xt=Θ(B)εt
    其中,滑动平均系数多项式
    Θ ( B ) = 1 − θ 1 B − θ 2 B 2 − ⋯ − θ q B q \Theta(B)=1-\theta_{1}B-\theta_{2}B^{2}-\dots-\theta_{q}B^{q} Θ(B)=1θ1Bθ2B2θqBq
滑动平均模型的判据
  1. MA(q)模型自相关系数的性质
    ρ k = { 1 , k = 0 − θ q + ∑ i = 1 q − k θ i θ k + i 1 + θ q 2 + ⋯ + θ q 2 , 1 ≤ k ≤ q 0 , k > q \rho_{k}=\left\{\begin{matrix} 1,\qquad k=0 \\ \frac{-\theta_{q}+\sum_{i=1}^{q-k}\theta_{i}\theta_{k+i}}{1+\theta_{q}^{2}+\dots+\theta_{q}^{2}},\qquad 1\le k\le q \\ 0,\qquad k>q \end{matrix}\right. ρk= 1,k=01+θq2++θq2θq+i=1qkθiθk+i,1kq0,k>q
    自相关系数q阶截尾
  2. MA(q)模型偏自相关系数的性质
    ϕ k k = ( − θ 1 ε t − 1 − ⋯ − θ q ε t − q ) ( − θ 1 ε t − k − 1 − ⋯ − θ q ε t − k − k + 1 ) σ − 2 \phi_{kk}=(-\theta_{1}\varepsilon_{t-1}-\dots-\theta_{q}\varepsilon_{t-q})(-\theta_{1}\varepsilon_{t-k-1}-\dots-\theta_{q}\varepsilon_{t-k-k+1})\sigma^{-2} ϕkk=(θ1εt1θqεtq)(θ1εtk1θqεtkk+1)σ2
    θ 1 , … , θ q 不全为零 \theta_{1},\dots,\theta_{q}不全为零 θ1,,θq不全为零
    ϕ k k \phi_{kk} ϕkk不会在有限阶后恒为0
    MA(q)模型偏自相关系数具有拖尾性

例1
![[Pasted image 20240820131224.png]]

mdl = ...
arima('Constant', 0,...
'MALags',[1], ...
'MA', {-0.4}, ...
'Variance', 1)
x = simulate(mdl, 1000); 
autocorr(x)

![[Pasted image 20240820131443.png]]

例2
![[Pasted image 20240820131503.png]]

mdl = ...
arima('Constant', 0,...
'MALags',[1], ...
'MA', {-0.4}, ...
'Variance', 1)
x = simulate(mdl, 1000); 
parcorr(x)

![[Pasted image 20240820131514.png]]

例3
![[Pasted image 20240820131633.png]]

mdl = ...
arima('Constant', 0,...
'MALags',[1,2], ...
'MA', {-4/5,16/25}, ...
'Variance', 1)
x = simulate(mdl, 1000); 
autocorr(x)

![[Pasted image 20240820131802.png]]

例4
![[Pasted image 20240820131827.png]]

mdl = ...
arima('Constant', 0,...
'MALags',[1,2], ...
'MA', {-4/5,16/25}, ...
'Variance', 1)
x = simulate(mdl, 1000); 
parcorr(x)

![[Pasted image 20240820131850.png]]

MA(q)模型的判据
  • 自相关系数q阶截尾
  • 偏自相关系数拖尾
    在实际数据建模过程中,还需要MA(q)具有可逆性,这样才能保证所建立的MA模型与以上判据特征是一一对应关系
MA(q)模型的可逆性判别

特征根判别法
MA(q)可逆等价于其特征方程的特征根都在单位圆内
∣ λ i ∣ < 1   ( i = 1 , 2 , … , q ) | \lambda_{i}|<1\ (i=1,2,\dots,q) λi<1 (i=1,2,,q)


![[Pasted image 20240820132628.png]]
![[Pasted image 20240820132638.png]]

load data2.mat x;  %x为某平稳序列
figure(1), autocorr(x)
figure(2), parcorr(x)

![[Pasted image 20240820132814.png]]

mdl = arima(0, 0, 2)  %创建MA(2)模型
EstMdl = estimate(mdl, x);
Constant -0.017
AR{1}    -0.82
AR{2}    0.62
Variance 0.98

X t = − 0.017 + ε t − 0.82 ε t − 1 + 0.62 ε t − 2 X_{t}=-0.017+\varepsilon_{t}-0.82\varepsilon_{t-1}+0.62\varepsilon_{t-2} Xt=0.017+εt0.82εt1+0.62εt2
ε t ∼ N ( 0 , 0.98 ) \varepsilon_{t}\sim N(0, 0.98) εtN(0,0.98)

ARMA模型的概念和性质

ARMA模型的概念

时间序列 { X t } \left\{ X_{t} \right\} {Xt}的当前值不仅与自身的过去值有关,而且还与其以前的外部干扰有关
时间序列 { X t } \left\{ X_{t} \right\} {Xt}模型中既应该包括自身的滞后项,还需要包括过去的外部干扰
自回归滑动平均模型——ARMA(p,q)

  1. ARMA(p,q)模型的定义——自回归移动平均模型
    ARMA(p,q)模型的一般形式为
    { X t = ϕ 0 + ϕ 1 X t − 1 + ⋯ + ϕ p X t − p + ε t − θ 1 ε t − 1 − θ 2 ε t − 2 − ⋯ − θ q ε t − q ϕ p ≠ 0 , θ q ≠ 0 ε t ∼ N ( 0 , σ 2 ) ∀ s < t ,   E ( X s , ε t ) = 0 \left\{\begin{matrix} X_{t}=\phi_{0}+\phi_{1}X_{t-1}+\dots+\phi_{p}X_{t-p}+\varepsilon_{t}-\theta_{1}\varepsilon_{t-1}-\theta_{2}\varepsilon_{t-2}-\dots-\theta_{q}\varepsilon_{t-q} \\ \phi_{p}\ne 0 ,\quad\theta_{q}\ne 0\\ \varepsilon_{t} \sim N(0,\sigma^{2}) \\ \forall s < t,\ E(X_{s},\varepsilon_{t})=0 \end{matrix}\right. Xt=ϕ0+ϕ1Xt1++ϕpXtp+εtθ1εt1θ2εt2θqεtqϕp=0,θq=0εtN(0,σ2)s<t, E(Xs,εt)=0
    特别当 ϕ 0 = 0 \phi_{0}=0 ϕ0=0时,称为中心化ARMA(p,q)模型
    X t = ϕ 1 X t − 1 + ⋯ + ϕ p X t − p + ε t − θ 1 ε t − 1 − θ 2 ε t − 2 − ⋯ − θ q ε t − q X_{t}=\phi_{1}X_{t-1}+\dots+\phi_{p}X_{t-p}+\varepsilon_{t}-\theta_{1}\varepsilon_{t-1}-\theta_{2}\varepsilon_{t-2}-\dots-\theta_{q}\varepsilon_{t-q} \\ Xt=ϕ1Xt1++ϕpXtp+εtθ1εt1θ2εt2θqεtq
  2. ARMA(p,q)——系数多项式
    引进延迟算子B,中心化ARMA(p,q)模型可简记为
    Φ ( B ) X t = Θ ( B ) ε t \Phi(B)X_{t}=\Theta(B)\varepsilon_{t} Φ(B)Xt=Θ(B)εt
    其中,p阶自回归系数多项式
    Φ ( B ) = 1 − ϕ 1 B − ϕ 2 B 2 − ⋯ − ϕ p B p \Phi(B)=1-\phi_{1}B-\phi_{2}B^{2}-\dots-\phi_{p}B^{p} Φ(B)=1ϕ1Bϕ2B2ϕpBp
    q阶移动平均系数多项式
    Θ ( B ) = 1 − θ 1 B − θ 2 B 2 − ⋯ − θ q B q \Theta(B)=1-\theta_{1}B-\theta_{2}B^{2}-\dots-\theta_{q}B^{q} Θ(B)=1θ1Bθ2B2θqBq
ARMA模型的性质
  1. 平稳性和可逆性
    ARMA(p.q)模型的平稳性
    ARMA(p.q)模型的平稳性完全由其自回归部分AR§的平稳性决定
    对应AR§模型的特征根都在单位圆内
    ARMA(p,q)模型的可逆性
    ARMA(p.q)模型的可逆性完全由其滑动平均部分MA(q)的可逆性决定对应MA(q)模型的特征根都在单位圆内
  2. (偏)自相关系数的性质
    自相关系数拖尾
    偏自相关系数拖尾


![[Pasted image 20240820140649.png]]

mdl = arima('Constant', 0, 'AR',{0.5}, 'MA', {-0.8}, 'Variance', 1)
x = simulate(mdl, 1000); 
figure(1), autocorr(x)
figure(2), parcorr(x)

![[Pasted image 20240820141553.png]]
![[Pasted image 20240820141612.png]]

例2
![[Pasted image 20240820141628.png]]
![[Pasted image 20240820141700.png]]
![[Pasted image 20240820141711.png]]

ARMA(p,q)模型的判据

自相关系数拖尾
偏自相关系数拖尾

  • 13
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值